#### KANSAS BOARD OF REGENTS COUNCIL OF CHIEF ACADEMIC OFFICERS

#### MEETING AGENDA Tuesday, September 8, 2020 10:45 – 11:45 a.m. Or upon adjournment of SCOCAO

The Council of Chief Academic Officers (COCAO) will meet by video conference. The public is welcome to listen to the meeting in Suite 520, Curtis State Office Building, located at 1000 SW Jackson, Topeka, KS 66612. Questions can be emailed to arobinson@ksbor.org.

| I.   | Call to Order<br>A. Roll Call                                                                                                                                                                                                                                                                                                                                                             | Rick Muma, Chair                                                          |                                 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------|
| II.  | <ul><li>B. Approve Minutes from the June 17, 2020</li><li><b>Requests</b></li><li>A. First Readings</li></ul>                                                                                                                                                                                                                                                                             | De haar Distributererer                                                   | p. 3                            |
|      | <ol> <li>Master of Engineering in Bioengineering – KU</li> <li>Second Readings         <ol> <li>Bachelor of Health Sciences - KU</li> <li>BA &amp; BS in Integrated Computer Science – K-State</li> <li>BS in Public Health – K-State</li> </ol> </li> </ol>                                                                                                                              | Barbara Bichelmeyer<br>Barbara Bichelmeyer<br>Chuck Taber<br>Chuck Taber  | p. 6<br>p. 23<br>p. 33<br>p. 45 |
| III. | Council of Faculty Senate Presidents Update                                                                                                                                                                                                                                                                                                                                               | Aleksander Sternfeld-Dunn,<br>WSU                                         |                                 |
| IV.  | Other Matters                                                                                                                                                                                                                                                                                                                                                                             |                                                                           |                                 |
|      | <ul> <li>A. Submission of Updated University Admissions Policies</li> <li>B. Recommended High School Courses for College Preparation</li> <li>C. Discuss Collaborations with Chief Diversity Officers</li> <li>D. Discuss Opportunities (new degree programs, partnerships, strategic initiatives, etc.) that Universities are Considering or Planning to Pursue in the Future</li> </ul> | Sam Christy-Dangermond<br>Daniel Archer<br>Daniel Archer<br>COCAO Members | p. 54<br>p. 59                  |
|      |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |                                 |

#### V. Next COCAO Meeting – October 7th at 11:30am

• The University Press of Kansas Board of Trustees will meet upon adjournment via a separate video conference

#### VI. Adjournment

Date Reminders:

- October: Apply Kansas College Application Month
- October 16: 2020 KCOG Virtual Conference
- October: 2020 Tilford Conference is Suspended

#### COUNCIL OF CHIEF ACADEMIC OFFICERS

The Council of Chief Academic Officers, established in 1969, is composed of the academic vice presidents of the state universities. The Board's Vice President for Academic Affairs serves as an ex officio member, and the member from the same institution as the chairperson of the Council of Presidents serves as chairperson of the Council of Chief Academic Officers. The chief academic officers of the University of Kansas Medical Center and Washburn University are authorized to participate as non-voting members when agenda items affecting those institutions are to be considered. The Council of Chief Academic Officers meets monthly and reports to the Council of Presidents. The Council of Chief Academic Officers works with the Board Academic Affairs Committee through the Vice President for Academic Affairs. Membership includes:

| Rick Muma, Chair | WSU     | Barbara Bichelmeyer | KU       |
|------------------|---------|---------------------|----------|
| Jill Arensdorf   | FHSU    | Robert Klein        | KUMC     |
| David Cordle     | ESU     | JuliAnn Mazachek    | Washburn |
| Howard Smith     | PSU     | Daniel Archer       | KBOR     |
| Charles Taber    | K-State |                     |          |

### **Council of Chief Academic Officers**

#### AY 2021 Meeting Schedule

| Meeting Dates                                                   | Location                                 | Lunch<br>Rotation | Institution Materials<br>Due | New Program<br>Requests due |
|-----------------------------------------------------------------|------------------------------------------|-------------------|------------------------------|-----------------------------|
| September 08, 2020<br>*10:45am or upon<br>adjournment of SCOCAO | Video Conference                         |                   | August 19, 2020              | July 14, 2020               |
| October 07, 2020<br>*11:30am, UPK after                         | Conference Call for degree programs only |                   | August 12, 2020              |                             |
| November 18, 2020                                               | ESU                                      | ESU               | October 28, 2020             | September 23, 2020          |
| December 16, 2020                                               | Topeka                                   |                   | November 24, 2020            | October 21, 2020            |
| January 20, 2021                                                | Topeka                                   |                   | December 30, 2020            | November 18, 2020           |
| February 17, 2021                                               | Topeka                                   |                   | January 27, 2021             | December 23, 2020           |
| March 17, 2021                                                  | Topeka                                   |                   | February 24, 2021            | January 20, 2021            |
| April 14, 2021                                                  | FHSU                                     | FHSU              | March 24, 2021               | February 24, 2021           |
| May 19, 2021                                                    | Topeka                                   |                   | April 28, 2021               | March 24, 2021              |
| June 16, 2021                                                   | Topeka                                   |                   | May 26, 2021                 | April 21, 2021              |

#### Council of Chief Academic Officers MINUTES

#### Wednesday, June 17, 2020

The June 17, 2020 meeting of the Council of Chief Academic Officers was called to order by Chair David Cordle at 8:44 a.m. The meeting was originally scheduled to be held in Topeka. Due to the COVID-19 Pandemic, this meeting was held through Zoom and live streamed for the public.

#### In Attendance:

| Members: | David Cordle, ESU                                                                                                                                                                                                               | Jill Arensdorf, FHSU                                                                                                                                                                                            | Charles Taber, K-State                                                                                                                                                                                                                    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Robert Klein, KUMC                                                                                                                                                                                                              | Rick Muma, WSU                                                                                                                                                                                                  | JuliAnn Mazachek, Washburn                                                                                                                                                                                                                |
|          | Barbara Bichelmeyer, KU                                                                                                                                                                                                         | Howard Smith, PSU                                                                                                                                                                                               | Daniel Archer, KBOR                                                                                                                                                                                                                       |
| Staff:   | Sam Christy-Dangermond<br>Karla Wiscombe                                                                                                                                                                                        | Amy Robinson<br>Erin Wolfram                                                                                                                                                                                    | Travis White                                                                                                                                                                                                                              |
| Others:  | Brad Bennett, Colby CC<br>Erin Shaw, Highland CC<br>Alysia Starkey, K-State<br>Linnea GlenMaye, WSU<br>Ryan Ruda, Garden City CC<br>Adam Borth, Fort Scott CC<br>Stuart Day, KU<br>Mindy Markham, KU<br>Jason Sharp, Labette CC | Jean Redeker, KU<br>Corey Isbell, NCKTC<br>Craig Harms, K-State<br>Michelle Schoon, Cowley CC<br>Stanton Gartin, Salina Tech<br>Alek Sternfeld-Dunn, WSU<br>Kim Morse, Washburn<br>Jane Holwerda, Dodge City CC | Brian Niehoff, K-State<br>Jerry Pope, KCKCC<br>Graham Leach Krouse, K-State<br>Pedro Leite, Cloud County CC<br>Steve Loewen, Flint Hills Tech<br>Aron Potter, Coffeyville CC<br>Ryan Diehl, Hutchinson CC<br>Joe McCann, Seward County CC |

Chair David Cordle welcomed everyone.

#### **Approval of Minutes**

Howard Smith moved to approve the minutes of the May 14, 2020 special meeting, and Rick Muma seconded the motion. With no corrections or discussion, the motion passed.

Barbara Bichelmeyer moved to approve the minutes of the May 20, 2020 regular meeting, and Juli Mazachek seconded the motion. With no corrections or discussion, the motion passed.

#### 1<sup>st</sup> Readings

- K-State is requesting a Bachelor of Science and Bachelor of Arts in Integrated Computer Science in the College of Arts and Sciences. This is a cross-college collaboration for students who want to attend a computer skills-based program which connects to various areas of interest with a focus in arts and sciences. Chuck Taber provided a brief overview of the program. No questions were presented by the Committee.
- K-State is requesting a Bachelor of Science in Public Health in the College of Health and Human Sciences/Kinesiology. This is an interdisciplinary program designed to address the growing need for public health workers. Chuck Taber provided an overview of the program. No questions were presented by the Committee.
- KU is requesting a Bachelor of Health Sciences in the School of Professional Studies at the Edwards Campus. Barbara Bichelmeyer introduced Stuart Day, the inaugural Dean. Stuart provided a brief

overview of the new program. This is an online completion degree and collaborated between KUMC and JCCC.

Juli Mazachek noted that Washburn University has a new Bachelor of Health Sciences degree online and she believes there is demand for these programs. She noted Washburn also has an articulation agreement with JCCC and hopes they can work together with KU. Rick Muma noted WSU offers a Health Science degree and asked for more information on how they are offering related courses online in terms of labs. Stuart stated he could provide further information on how they are accomplishing this.

No action is required for first readings. These three programs will be presented for a vote at the next COCAO meeting.

#### **Other Requests**

• K-State is requesting a name change of the Bachelor of Arts and Bachelor of Science in Fisheries, Wildlife, and Conservation Biology to Fisheries, Wildlife, Conservation, and Environmental Biology. Chuck Taber and Brian Niehoff were available for questions.

Jill Arensdorf motioned to approve the name change, and Rick Muma seconded the motion. The motion passed unanimously by roll call vote.

• K-State is requesting approval to change the name of their School of Integrated Studies to the Department of Integrated Studies at their Polytechnic campus. They are also requesting to create a new Department of Aviation. Alysia Starkey gave a brief overview of the two requests. The Polytechnic campus currently operates under the School of Integrated Studies, which was created by combining a number of departments. These requests essentially separate the school into two academic departments. No questions were presented by the Committee.

Barbara Bichelmeyer motioned to approve the two requests, and Jill Arensdorf seconded the motion. The motion passed by roll call vote.

• Barbara Bichelmeyer provided an overview of KU's requests to change three programs from a Master of Arts to a Master of Science. These changes better reflect degree requirements, which have significant research components, communicate these requirements, and better align with similar degree programs at other institutions. Barbara noted the department is not changing the name of the degrees but is seeking a change in the type of degree.

KU is requesting approval to change their Master of Arts in Microbiology to Master of Science in Microbiology.

KU is requesting approval to change their Master of Arts in Biochemistry & Biophysics to a Master of Science in Biochemistry & Biophysics.

KU is requesting approval to change their Master of Arts in Molecular, Cellular, & Developmental Biology to a Master of Science in Molecular, Cellular, & Developmental Biology.

Rick Muma motioned to approve the three requests, and Howard Smith seconded the motion. With no questions or further discussion, the motion passed unanimously by roll call vote.

#### **Council of Faculty Senate Presidents Update**

Aleksander Sternfeld-Dunn, WSU, is the new Faculty Senate President. Alek is the Director of the School of Music and has been with WSU for 10 years. Alek will provide an update at the next COCAO meeting. He noted

we are at the most trying time in the last 100 years and believes the faculty presidents and elected faculty representatives will be key to working together to change, adapt, and initiate as we all move forward.

#### **Other Matters/New Business**

• Barbara Bichelmeyer noted as KU moves forward with their pans for fall semester, they have created 10 design teams. These teams will address pandemic related issues with keeping in mind the goals of the new Strategic Plan. One of the new teams is called "Jayhawk Cloud" and builds on the Microsoft platform to create a cloud presence for all KU events, activities, groups, and offices. This will be key for those that cannot come back to campus to engage in campus life.

#### **Adjournment**

David noted the University Press of Kansas Board of Trustees will meet after adjournment of BAASC.

Committee members expressed appreciation for David's work as Chair and thanked him for his leadership.

Rick Muma moved to adjourn the meeting, and Jill Arensdorf seconded the motion. With no further discussion, the motion passed. The meeting adjourned at 9:19 a.m.

#### **Program Approval**

#### I. General Information

| A. | Institution | University of Kansas |
|----|-------------|----------------------|
|    |             |                      |

#### **B.** Program Identification

| Degree Level:                   | Master's                 |
|---------------------------------|--------------------------|
| Program Title:                  | Master of Bioengineering |
| Degree to be Offered:           | Master of Engineering    |
| Responsible Department or Unit: | School of Engineering    |
| CIP Code:                       | 14.0501                  |
| Modality:                       | Face-to-Face             |
| Proposed Implementation Date:   | Fall 2021                |

Total Number of Semester Credit Hours for the Degree: 30

**II.** Clinical Sites: Does this program require the use of Clinical Sites? No

#### **III.** Justification

The Master of Engineering (ME) in Bioengineering reflects the mission statement of KU and its commitment "to lift students and society by educating leaders, building healthy communities and making discoveries that change the world". The program will educate leaders, will help build healthy communities, and will make discoveries through the work of these leaders.

The ME in Bioengineering degree is an efficient way for KU undergraduates and others with undergraduate degrees to obtain more in-depth background and credentials in bioengineering prior to seeking employment or while being employed. The degree will prepare graduates to be more effective in their careers in medicine, in established commercial firms, and with entrepreneurship in a start-up company. The general goals and objectives for the ME in Bioengineering degree are:

- 1. Provide students with an in-depth understanding of mathematics, engineering principles, physics, chemistry, physiology, and modern biology;
- 2. Train students to apply basic sciences to biological problems, using engineering principles;
- 3. Train students to apply bioengineering analysis to commercially relevant problems.

The ME degree is a coursework only master's degree, meaning it does not have a thesis option. It is identical to the existing Master of Science (MS) in Bioengineering degree at KU with the exception that the MS requires a thesis and a thesis defense examination, while the ME substitutes coursework credit hours for thesis credit hours. For many interested in a career in industry, the time required to write and defend a thesis are barriers to obtaining a Master's degree, making the ME an attractive option for some professionals.

The proposed ME degree is in response to the expanding Kansas City region biosciences community. The degree is designed to be more accessible and appealing to regional professionals whose focus is on working in industry and who are looking to further their education and improve their skills. To that end the ME in Bioengineering, like the MS, has the following six tracks available: Computational Bioengineering; Biomechanics & Neural Engineering; Biomedical Product Design & Development; Biomaterials & Tissue Engineering; Biomolecular Engineering; and Bioimaging.

Also, because KU does not offer an undergraduate Bioengineering/Biomedical Engineering degree, the ME in Bioengineering will be attractive to current undergraduates who are interested in the biomedical industry. The addition of the ME degree will provide another option that is more appealing to some students, and should increase KU's overall Master's applications for Bioengineering.

#### **IV. Program Demand: Market Analysis**

The national demand for biomedical engineering degrees in general and Master's degrees in Biomedical Engineering continues to grow by about 7% per year (Figure 1). The proposed degree targets science and engineering bachelor's degree holders who seek a career at the interface between science, medicine and engineering. Similar programs are in place at top academic institutions around the country (e.g. Johns Hopkins, Georgia Tech, Duke, etc.). While WSU also offers an MS in Bioengineering, there are currently no programs that offer a professional coursework-only ME Degree in Bioengineering or Biomedical Engineering at any academic institution in the state of Kansas, only two in the Big 12, and only three regionally.

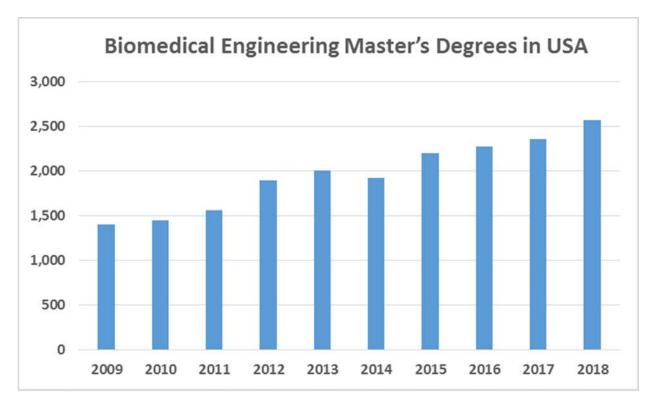



Figure 1. BME Master's Degrees Data from the American Society of Engineering Education July 2019 report for the 2017-2018 Academic Year.

KU has had strong demand for graduate degrees in Bioengineering, and applications for fall semester of 2020 hit an all-time high. Thus, the demand for Bioengineering/Biomedical engineering remains strong and growing. Enrollments in the past few years have been between 50 and 60 graduate students; about half of those are typically MS students. Nationally, the number of Master's degrees awarded in Biomedical Engineering has nearly doubled in the last 10 years, and we project that this expansion and growth will continue for the foreseeable future. The rate of increase is among the very fastest-growing interdisciplinary degree programs in the USA. Many potential graduate students do not seek the advanced degree because of the time required for research and writing of a Master's thesis. This ME degree will capture students focused on industrial positions and who are not seeking to complete a thesis. The degree could be completed within one year of fulltime coursework.

| Year           | Headcou    | unt Per Year | Sem Credi  | it Hrs Per Year |
|----------------|------------|--------------|------------|-----------------|
|                | Full- Time | Part- Time   | Full- Time | Part- Time      |
| Implementation | 3          | 1            | 90         | 6               |
| Year 2         | 4          | 2            | 120        | 18              |
| Year 3         | 4          | 2            | 120        | 30              |

#### V. Projected Enrollment for the Initial Three Years of the Program

#### VI. Employment

KU's Bioengineering Graduate Program <u>currently has a placement rate of over 95%</u>. And even with the effects of the novel coronavirus, the job outlook is good. According to the US Bureau of Labor Statistics, the median salary of a bioengineer in 2019 was \$91,410 per year (though the data does not account for level of degree).

Thus, Bioengineering is an appealing degree for the interesting area of work, the strong job market and the competitive compensation. According to the Wichita State University Center for Economic Development and Business Research employment forecast from October 2019, Kansas employment grew by only 0.5 percent in 2019, adding approximately 8,000 new jobs to the state economy, but is projected to contract due to novel coronavirus in 2020. The Bureau of Labor Statistics (BLS) still projects the job outlook for biomedical engineers to grow nationally by about the national average of 4% from 2018 to 2028 (OOH-BME, 2020), providing job opportunities for graduates.

Additionally, we expect many professional students in this program to be currently employed. These students will either work on their degree part-time or will take a leave of absence to complete the degree in one year on a full-time basis, and will have almost certain employment (and new internal and/or external opportunities) upon degree completion.

#### VII. Admission and Curriculum

#### A. Admission Criteria

Applicants will apply to the ME in Engineering and will include a personal statement detailing how this program will support the candidate's career goal(s), resume, and three letters of recommendation. In addition, the student must meet the requirements below.

- Overall undergraduate GPA: greater than 3.0 (out of 4.0)
- Complete a KU Graduate Application and submit official transcripts from each institution attended
- Bachelor's degree in engineering, the biological sciences, physical sciences, or a related field from an accredited post-secondary institution
- Have completed the following coursework (typically completed as part of an undergraduate degree):
  - Mathematics through differential equations and linear algebra (MATH 220 and MATH 290; or equivalents)
    - One year of calculus-based physics (through PHSX 212, or the equivalent)
    - One course in general chemistry (CHEM 150 or 130, or the equivalent)
    - One course in molecular/cell/human biology (BIOL 100 or BIOL 150, or the equivalent)
    - Additional coursework required for admission vary by program track and will be the same as the track admission requirements for the existing MS degree program. (Please see Attachment 1 for track-specific admission requirements.)
- International students must also meet KU's English proficiency, visa/I20, and financial support requirements.

#### B. Curriculum

Students select one of the six tracks for their primary exposure to bioengineering concepts. All the tracks have the same required core courses (total 6 credit hours): C&PE 756 Introduction to Biomedical Engineering, BIOE 800 Colloquium, and BIOE 801 Responsible Conduct of Research in Engineering. The course C&PE 756 Introduction to Biomedical Engineering, permits them to delve into the subject area of their track, but also allows the student to sample the breadth of bioengineering topics across all of the tracks. BIOE 800 Colloquium provides some professional development as well as additional exposure to the breadth of applications in bioengineering. While BIOE 801 Responsible Conduct of Research in Engineering, might seem less relevant for a professional coursework-only Master of Engineering degree, the focus on professional engineering ethics is quite applicable and important for individuals in industry, as well.

ME students work with an advisor familiar with their selected track area to develop a formal plan of study; each track has a track director and affiliated faculty. The student selects from among track courses to construct a comprehensive educational program that (a) takes advantage of the student's background, (b) builds and demonstrates academic skills, and (c) capitalizes on the strengths of the affiliated faculty. This approach follows a structure common to many of the top Bioengineering/ Biomedical Engineering graduate programs nationally.

Beyond the core courses, each track has 9 credit hours of required depth courses focused on the track, and an additional 15 credit hours of breadth courses. However, because of the varied nature of the tracks there are minor variations in core, depth, and breadth requirements between the tracks. (Please see Attachment 2 for track-specific requirements, and Attachment 3 for the master breadth course list)

| Year 1: Fall |                                                | SCH = Semester Credit Hours |
|--------------|------------------------------------------------|-----------------------------|
| Course #     | Course Name                                    | SCH                         |
| C&PE 756     | Introduction to Biomedical Engineering         | 3                           |
| BIOE 800     | Bioengineering Colloquium                      | 1                           |
| BIOE 801     | Responsible Conduct of Research in Engineering | 1                           |
|              | Track Depth Course                             | 3                           |
|              | Track Breadth Course                           | 3                           |
|              | Track Breadth Course                           | 3                           |

#### Year 1: Spring

| Course # | Course Name               | SCH |
|----------|---------------------------|-----|
| BIOE 800 | Bioengineering Colloquium | 1   |
|          | Track Depth Course        | 3   |
|          | Track Depth Course        | 3   |
|          | Track Breadth Course      | 3   |
|          | Track Breadth Course      | 3   |

#### Year 1: Summer

| ſ | Course # | Course Name          | SCH |
|---|----------|----------------------|-----|
|   |          | Track Breadth Course | 3   |

#### 

#### VIII. Core Faculty (defined by the program based on level of service and activity in the program)

Note: \* Next to Faculty Name Denotes Director of the Program, if applicable FTE: 1.0 FTE = Full-Time Equivalency Devoted to Program

Program administration will be the responsibility of KU's current Bioengineering Graduate Program. The MS and PhD degrees in Bioengineering and the proposed ME degree encompass courses and faculty from departments throughout the School of Engineering, the School of Pharmacy, the College of Liberal Arts and Sciences, and the KU Medical Center. No Bioengineering faculty affiliate has a primary appointment in Bioengineering, but each is affiliated with the Bioengineering Graduate Program based on their research areas, their desire to assist in program administration, and their desire to advise Bioengineering graduate students. Service to the Bioengineering program is considered to also be service to the primary department. Thus, the Bioengineering Director and the Graduate Studies Director, and full salary is provided for the Bioengineering student program coordinator (staff position) by the School of Engineering.

| Faculty Name       | Rank                | Highest<br>Degree | Tenure<br>Track<br>Y/N | Academic Area of<br>Specialization | FTE to<br>Proposed<br>Program |
|--------------------|---------------------|-------------------|------------------------|------------------------------------|-------------------------------|
| Berkland, Cory     | Full Professor      | PhD               | Y                      | Chemical & Petroleum Engr Dept     | 0                             |
| Brumberg, Jonathan | Associate Professor | PhD               | Y                      | Speech-Language-Hearing Dept       | 0                             |
| DeKosky, Brandon   | Assistant Professor | PhD               | Y                      | Chemical & Petroleum Engr Dept     | 0                             |
| Dhar, Prajna       | Associate Professor | PhD               | Y                      | Chemical & Petroleum Engr Dept     | 0                             |
| Fischer, Ken*      | Full Professor      | PhD               | Y                      | Mechanical Engineering Department  | 12.8%                         |
| Forrest, Laird     | Full Professor      | PhD               | Y                      | Pharmaceutical Chemistry           | 0                             |
| Friis, Elizabeth   | Full Professor      | PhD               | Y                      | Mechanical Engineering Department  | 0                             |
| Gehrke, Stevin     | Full Professor      | PhD               | Y                      | Chemical & Petroleum Engr Dept     | 7.7%                          |
| Hutchison, Justin  | Assistant Professor | PhD               | Y                      | Civil, Environmental & Arch Engr   | 0                             |
| Luchies, Carl      | Associate Professor | PhD               | Y                      | Mechanical Engineering Department  | 0                             |
| Maletsky, Lorin    | Full Professor      | PhD               | Y                      | Mechanical Engineering Department  | 0                             |
| McIff, Terence     | Full Professor      | PhD               | Y                      | Orthopedics & Sports Medicine      | 0                             |
| Nudo, Randy        | Full Professor      | PhD               | Y                      | Rehabilitation Medicine Department | 0                             |
| Robinson, Jenny    | Assistant Professor | PhD               | Y                      | Chemical & Petroleum Engr Dept     | 0                             |
| Shontz, Suzanne    | Associate Professor | PhD               | Y                      | Electrical Engr & Computer Science | 0                             |
| Soper, Steven      | Full Professor      | PhD               | Y                      | Chemistry Department               | 0                             |
| Spencer, Paulette  | Full Professor      | PhD               | Y                      | Mechanical Engineering Department  | 0                             |
| Candan Tamerler    | Full Professor      | PhD               | Y                      | Mechanical Engineering Department  | 0                             |
| Wilson, Sara       | Associate Professor | PhD               | Y                      | Mechanical Engineering Department  | 0                             |
| Yang, Xinmai       | Associate Professor | PhD               | Y                      | Mechanical Engineering Department  | 0                             |

Number of graduate assistants assigned to this program ......

| Expenditure and Funding Sources (List amounts in dollars. Provide explanations as necessary | v.) |
|---------------------------------------------------------------------------------------------|-----|
|---------------------------------------------------------------------------------------------|-----|

| A. EXPENDITURES                                                       | First FY | Second FY | Third FY |
|-----------------------------------------------------------------------|----------|-----------|----------|
| Personnel – Reassigned or Existing Positions                          |          |           |          |
| Faculty                                                               | 0        | 0         | 0        |
| Administrators (other than instruction time)                          | 8,348    | 8,348     | 8,348    |
| Graduate Assistants                                                   | 0        | 0         | 0        |
| Support Staff for Administration ( <i>e.g.</i> , <i>secretarial</i> ) | 12,417   | 12,417    | 12,417   |
| Fringe Benefits (total for all groups)                                | 6,230    | 6,230     | 6,230    |
| Other Personnel Costs                                                 | 0        | 0         | 0        |
| Total Existing Personnel Costs – Reassigned or Existing               | 26,995   | 26,995    | 26,995   |
| Personnel – New Positions                                             |          |           |          |
| Faculty                                                               | 0        | 0         | 0        |
| Administrators (other than instruction time)                          | 0        | 0         | 0        |
| Graduate Assistants                                                   | 0        | 0         | 0        |
| Support Staff for Administration ( <i>e.g.</i> , <i>secretarial</i> ) | 0        | 0         | 0        |
| Fringe Benefits (total for all groups)                                | 0        | 0         | 0        |
| Other Personnel Costs                                                 | 0        | 0         | 0        |
| Total Personnel Costs – New Positions                                 | 0        | 0         | 0        |
| Start-up Costs - One-Time Expenses                                    |          |           |          |
| Library/learning resources                                            | 0        | 0         | 0        |
| Equipment/Technology                                                  | 0        | 0         | 0        |
| Physical Facilities: Construction or Renovation                       | 0        | 0         | 0        |
| Other                                                                 | 0        | 0         | 0        |
| Total Start-up Costs                                                  | 0        | 0         | 0        |
| Operating Costs – Recurring Expenses                                  |          |           |          |
| Supplies/Expenses                                                     | 0        | 0         | 0        |
| Library/learning resources                                            | 0        | 0         | 0        |
| Equipment/Technology                                                  | 0        | 0         | 0        |
| Travel                                                                | 0        | 0         | 0        |
| Other                                                                 | 0        | 0         | 0        |
| Total Operating Costs                                                 | 0        | 0         | 0        |
| GRAND TOTAL COSTS                                                     | 26,995   | 26,995    | 26,995   |

| <b>B. FUNDING SOURCES</b> (projected as appropriate)                                                 | Current | First FY<br>(New) | Second FY<br>(New) | Third FY<br>(New) |
|------------------------------------------------------------------------------------------------------|---------|-------------------|--------------------|-------------------|
| Tuition / State Funds                                                                                |         | 39,955            | 57,436             | 62,430            |
| Student Fees                                                                                         |         | 2,626             | 3,774              | 4,103             |
| Other Sources                                                                                        |         | 0                 | 0                  | 0                 |
| GRAND TOTAL FUNDING                                                                                  |         | 42,581            | 61,210             | 66,533            |
| <b>C. Projected Surplus/Deficit</b> (+/-)<br>(Grand Total Funding <i>minus</i> Grand Total<br>Costs) |         | 15,586            | 34,215             | 39,538            |

#### IX. Expenditures and Funding Sources Explanations

#### A. Expenditures

#### **Personnel – Reassigned or Existing Positions**

No new resources are required for instruction or to administer this degree program. The current Bioengineering Graduate Program Director, Graduate Studies Director and student program coordinator will administer this degree program, along with the existing Master of Science and Doctoral degree programs in Bioengineering. As such 1/3<sup>rd</sup> of their salary for Bioengineering administration as described in the "Core Faculty" section of the proposal is assigned to the ME program. All courses are already/currently being offered as part of the existing degree programs.

#### **Personnel – New Positions**

No new positions are required for instruction or to administer this degree program.

#### **Start-up Costs – One-Time Expenses**

No new resources are required to initiate this degree program.

#### **Operating Costs – Recurring Expenses**

No new resources are required for operating costs of this degree program.

#### **B. Revenue: Funding Sources**

Funding for the program will be through tuition and student fees (with typically 50% of total student credit hours in Engineering, course fees \$54.70 credit hour). We expect primarily Kansas residents and those qualifying for in-state tuition (\$416.20/credit hour) will be interested in the program. We have conservatively estimated the number of students interested in the program and expect the program to meet KBOR minima requirements for enrollments and graduates within five years of inception.

#### C. Projected Surplus/Deficit

Our budget estimate indicates the degree program will run a surplus beginning in Year 1.

#### X. References

American Society of Engineering Education July 2019 report for the 2017-2018 Academic Year, <u>https://www.asee.org/documents/papers-and-publications/publications/college-profiles/2018-</u> Engineering-by-Numbers-Engineering-Statistics-UPDATED-15-July-2019.pdf.

Occupational Outlook Handbook: Biomedical Engineers (OOH-BME, 2020), https://www.bls.gov/ooh/architecture-and- engineering/biomedical-engineers.htm

Center for Economic Development and Business Research, Kansas Employment Forecast, https://www.cedbr.org/forecast-blog/forecasts-kansas/1696-economic-outlook-kansas-2020-mayrevision

## **Attachment 1**

### **Detailed Admissions Requirements**

The application process is similar to many department degrees. Students will apply to the BIOE program for the Master of Engineering degree. The application will include a personal statement, resume, transcripts, and letters of recommendation. The Admissions Committee (five total members and chaired by the Program Director) reviews the applications. Because of the number of applications, not every Admissions Committee member will review all applicant files as a primary reviewer. Each application received primary review by no fewer than 3 members, and in some cases 4 or all 5 members. The Admission Committee members rate the application in several categories and provide comments that provide rationale for the rankings. After they have submitted their ratings and evaluations, they are allowed to see the ratings/evaluations of the other committee members. After reviews are all complete, the committee meets to discuss each application, and even members who are not primary reviewers provide input to the decision for admission or denial. Decisions are then communicated to the students.

Students accepted into the program must fulfill the standard admission requirements of the University of Kansas Graduate School. In addition, the student must meet the requirements below.

- Overall undergraduate GPA: greater than 3.00 (out of 4.0)
- Personal statement detailing how this program will support the candidate's career goal(s)
- Bachelor's Degree from an accredited post-secondary institution
- Applicants for the Master of Engineering degree. should have a baccalaureate degree in engineering, the biological sciences, physical sciences, or a related field.
   In addition, the student must meet the requirements below.
  - General Coursework:
    - Mathematics through differential equations and linear algebra (MATH 220 and MATH 290; or equivalents)
    - ∞ One year of calculus-based physics (through PHSX 212, or the equivalent)
    - ∞ One course in general chemistry (CHEM 150 or 184, or the equivalent)
    - ∞ One course in molecular/cell/human biology (BIOL 100 or BIOL 150, or the equivalent)
- Three letters of recommendation
- For applicants with degrees from non-USA institutions:
  - o TOEFL Scores commensurate with Graduate School requirements, or
  - o IELTS Scores commensurate with Graduate School requirements

In addition the following tracks have additional track-specific minimum undergraduate preparation (entrance) requirements.

### **Biomaterials & Tissue Engineering Track**

One of the following three options:

- 1. Science of Materials: ME 306 or equivalent or ME 765 (as part of the graduate program)
- 2. Organic Chemistry or Biochemistry: CHEM 310/330, or equivalent (5)\*.
- 3. Cell Biology: BIOL 150 or equivalent\*

\*BIOL 807 (as part of the graduate program) can satisfy both criterion 2 & criterion 3

#### **Biomechanics & Neural Engineering Track**

- 1. Statistics: MATH 365/465 (or equivalent) (3)
- 2. All of the following a-c or d:
  - a. Statics: ME 211 (or equivalent)
  - b. Dynamics: ME 320 (or equivalent)
  - c. Mechanics of Materials: ME 311/CE 310 (or equivalent) (3)
  - d. or ME 633 Basic Biomechanics (as part of the graduate program)
- Science of Materials: ME 306 (or equivalent) (3); or ME 765 Biomaterials (can be as part of the graduate program) (3)
- 4. Computer Programming: ME 208/EECS 138/CPE 121 (or equivalent) (3).
- 5. Circuits/Electronics: EECS 316 & EECS 318 (or equivalent) (3) or Instrumentation: ME 455 (or equivalent) (3)

### **Biomedical Product Design & Development Track**

- 1. Science of Materials: ME 306 (or equivalent) (3); or ME 765 Biomaterials (can be as part of the graduate program) (3).
- 2. Computer Programming: ME 208/EECS 138/CPE 121 (or equivalent) (3).
- 3. Engineering Design: ME 501, CPE 613, EECS 501 (or equivalent) (3).
- 4. One of the following three options:
  - Statics, Dynamics and Mechanics of Materials: ME 211, CE 201, ME 320, ME 311,
    - CE 310 (or equiv.) or ME 633 (as part of grad program)
  - Circuits/Electronics Lab: EECS 316, EECS 318 or equiv. (3)
  - Fluids: ME 510, CPE 511, or equiv. (3) OR ME 756 (as part of grad program)

#### **Computational Bioengineering Track**

- 1. Programming Language: EECS 268 or equivalent (3)
- 2. One of the following four options:
  - a. Data Structures: EECS 560 or equivalent (3)
  - b. Statistics: MATH 65 or equivalent (3)
  - c. Numerical Methods/Scientific Computing: MATH 581, EECS 639 or equivalent (3)
  - d. Applied PDEs: MATH 647 or equivalent (3)



### Master of Engineering in Bioengineering **Track: Bioimaging**

Proposed for students entering Fall 2021 and beyond

Track Director: Xinmai Yang, Ph.D. (xmyang@ku.edu)

| CORE     | 6 hours required                                   |
|----------|----------------------------------------------------|
| CPE 756  | Intro to Bioengineering (3)                        |
| BIOE 800 | Bioengineering Colloquium (.5) (2 total hours req) |
| BIOE 801 | Responsible Conduct of Research in Engineering (1) |

#### DEPTH 9 hours minimum

| PHSL 801-8<br>PHSL 848<br>ME 752<br>ME 754<br>ME 758<br>EECS 639<br>EECS 721<br>EECS 731<br>EECS 739<br>EECS 740<br>EECS 740<br>EECS 644<br>EECS 744<br>EECS 781<br>EECS 782<br>EECS 868<br>EECS 869 | Anatomy and Physiology (1-4)<br>Fundamentals of Biomedical Imaging (3)<br>Acoustics<br>Biomedical Optics<br>Physiological Systems<br>Introduction to Scientific Computing (3)<br>RF Engineering/Antennas (3)<br>Introduction to Data Science (3)<br>Parallel Scientific Computing (3)<br>Digital Image Processing (3)<br>Intro to Digital Signal Processing (3)<br>Digital Signal Processing (3)<br>Numerical Analysis I (3)<br>Numerical Analysis II (3)<br>Mathematical Optimization with Applications (3)<br>Information Theory and Coding (3) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EECS 869                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CPE 778                                                                                                                                                                                              | Applied Optimization Techniques (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BIOL 943                                                                                                                                                                                             | Multivariate Data Analysis (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### **BREADTH** 15 hours minimum

Choose appropriate courses from the Master Breadth Course List.

#### **MINIMUM HOURS REQUIRED FOR DEGREE: 30**



### Master of Engineering in Bioengineering Track: Biomaterials & Tissue Engineering

Proposed for students entering Fall 2021 and beyond

Track Director: Candan Tamerler, Ph.D. (ctamerler@ku.edu)

| CORE                                           | 6 hours required                                   |  |
|------------------------------------------------|----------------------------------------------------|--|
| CPE 756                                        | Intro to Bioengineering (3)                        |  |
| BIOE 800                                       | Bioengineering Colloquium (.5) (2 total hours req) |  |
| BIOE 801                                       | Responsible Conduct of Research in Engineering (1) |  |
| DEPTH                                          | 9 hours required                                   |  |
| 1. Advanced Engineering (2                     | course min)                                        |  |
| ME 765                                         | Biomaterials (3)                                   |  |
| ME 767                                         | Molecular Biomimetics (3)                          |  |
| ME 854                                         | Continuum Mechanics of Soft Tissues (3)            |  |
| ME 990                                         | Advanced Biomaterials (3)                          |  |
| CPE 715                                        | Drug Delivery (3)                                  |  |
| CPE 715                                        | Polymer Science & Technology (3)                   |  |
| CPE 751                                        | Basic Rheology (3)                                 |  |
| CPE 752                                        | Tissue Engineering (3)                             |  |
| ME 790                                         | Biomedical Microdevices (3)                        |  |
| 2. Advanced Biological Sciences (1 course max) |                                                    |  |
| ANAT 845 / BIOL 560                            | Histology (3)                                      |  |
| MICR 808 / BIOL 503                            | Immunology (3)                                     |  |
| MICR 825 / BIOL 512                            | Virology (3)                                       |  |
| BIOL 612                                       | Fundamentals of Microbiology (3)                   |  |
| BIOL 546                                       | Mammalian Physiology (4)                           |  |
| BIOL 752                                       | Cell Biology (3)                                   |  |
| PHCH 860                                       | Principles & Practice of Chemical Biology (3)      |  |
|                                                |                                                    |  |

### 15 hours minimum

1. Math; Statistics; Numerical Methods (1 course min)

2. Sciences (1 course min)

3. Advanced Engineering (1 course min)

### MINIMUM HOURS REQUIRED FOR DEGREE: 30



### The University of Kansas Master of Engineering in Bioengineering Track: Biomechanics & Neural Engineering

ack. Biomechanics & Neural Engineerii

Proposed for students entering Fall 2021 and beyond

Track Director: Terence McIff, Ph.D. (tmciff@kumc.edu)

|                                                          | · · · ·                                            |  |
|----------------------------------------------------------|----------------------------------------------------|--|
| CORE                                                     | 6 hours required                                   |  |
| CPE 756                                                  | Intro to Bioengineering (3)                        |  |
| BIOE 800                                                 | Bioengineering Colloquium (.5) (2 total hours req) |  |
| BIOE 801                                                 | Responsible Conduct of Research in Engineering (1) |  |
|                                                          |                                                    |  |
| DEPTH                                                    | 9 hours required                                   |  |
| 1. Mechanics (2 course                                   | e min)                                             |  |
| ME 633                                                   | Basic Biomechanics (3)                             |  |
| ME 722                                                   | Modeling Dynamics of Mechanical Systems (3)        |  |
| ME 750                                                   | Biomechanics of Human Motion (3)                   |  |
| ME 751                                                   | Exp. Methods in Biomechanics (3)                   |  |
| ME 753                                                   | Bone Biomechanics (3)                              |  |
| ME 755                                                   | Computer Simulation in Biomechanics                |  |
| ME 757                                                   | Biomechanical Systems (3)                          |  |
| ME 760                                                   | Biomedical Product Design (3)                      |  |
| ME 765                                                   | Biomaterials (3)                                   |  |
| ME 854                                                   | Continuum Mechanics for Soft Tissues (3)           |  |
| CPE 751                                                  | Basic Rheology (3)                                 |  |
| 2. Physiology/Computing/Signal Processing (1 course max) |                                                    |  |
| ME 758                                                   | Physiological System Dynamics (3)                  |  |
| HSES 810                                                 | Advanced Exercise Physiology (3)                   |  |
| PHSL 800 or above                                        |                                                    |  |
| EECS 639                                                 | Introduction to Scientific Computing (3)           |  |
| EECS 739                                                 | Parallel Scientific Computing (3)                  |  |
| EECS 868                                                 | Mathematical Optimization with Applications (3)    |  |
| EECS 644                                                 | Intro to Digital Signal Processing (3)             |  |
| EECS 744                                                 | Digital Signal Processing (3)                      |  |
| EECS 861                                                 | Random Signals & Noise (3)                         |  |
|                                                          |                                                    |  |
| BREADTH                                                  | 15 hours minimum                                   |  |
|                                                          |                                                    |  |

Choose appropriate courses from the Master Breadth Course List.

1. Advanced Engineering (700 or above) (1 course minimum)

2. Life Sciences (1 course minimum)

3. Math, Statistics, Numerical Methods (1 course minimum)

### MINIMUM HOURS REQUIRED FOR DEGREE: 30



### Master of Engineering in Bioengineering

### **Track: Biomedical Product Design and Development**

#### Proposed for students entering Fall 2021 and beyond

Track Co-Directors: Lisa Friis, Ph.D. (Ifriis@ku.edu) and Sara Wilson, Ph.D. (sewilson@ku.edu)

| CORE                   | 3 hours required                                       |
|------------------------|--------------------------------------------------------|
| CPE 756                | Intro to Bioengineering - replaced with breadth course |
| BIOE 800               | Bioengineering Colloquium (.5) (2 total hours req)     |
| BIOE 801               | Responsible Conduct of Research in Engineering (1)     |
| DEPTH                  | 9 hours required                                       |
| 1. Fundamental Courses | (6 credits)                                            |
| ME 765                 | Biomaterials (3)                                       |
| AND                    |                                                        |
| ME 760                 | Biomedical Product Design (3)                          |
| 3. Design (3 credits)  |                                                        |
| ME 696                 | Design for Manufacturability (3)                       |
| ME 767                 | Molecular Biomimetics (3)                              |
| ME 790                 | Bioadditive Manufacturing (3)                          |
| ME 790                 | Biomedical Microdevices (3)                            |
| CPE 715                | Drug Delivery (3)                                      |
| CPE 715                | Polymer Science & Technology (3)                       |
| AE 709                 | Structural Composites (3)                              |
| CE 710                 | Structural Mechanics (3)                               |
| EECS 644               | Intro to Digital Signal Processing (3)                 |
| EECS 721               | Antennas (3)                                           |
| EECS 728               | Fiber-Optic Measurement & Sensors (3)                  |
| EECS 739               | Parallel Scientific Computing (3)                      |
| EECS 741               | Computer Vision (3)                                    |
|                        | or other Design course(s) as approved by committee     |

| BREADTH                                                   | 18 hours minimum                                                |  |
|-----------------------------------------------------------|-----------------------------------------------------------------|--|
|                                                           | Choose appropriate courses from the Master Breadth Course List. |  |
| 1. Math, Statistics, Numerical Methods (1 course minimum) |                                                                 |  |
| 2. Advanced Engineering (700 or above) (1 course minimum) |                                                                 |  |

- 3. Sciences (1 course minimum)
- 4. Management & Business (o required, 1 course max)

### MINIMUM HOURS REQUIRED FOR DEGREE: 30

# **KU**BIOENGINEERING GRADUATE PROGRAM

## The University of Kansas

### Master of Engineering in Bioengineering Track: Biomolecular Engineering

Proposed for students entering Fall 2021 and beyond

Track Director: Prajna Dhar, Ph.D. (prajnadhar@ku.edu)

| CORE                              | 6 hours required                                   |
|-----------------------------------|----------------------------------------------------|
| CPE 756                           | Intro to Bioengineering (3)                        |
| BIOE 800                          | Bioengineering Colloquium (.5) (2 total hours req) |
| BIOE 801                          | Responsible Conduct of Research in Engineering (1) |
| DEPTH                             | 6 hours required                                   |
| 1. Advanced Engineering / Pharmac |                                                    |
| CPE 701                           | Numerical Methods (3)                              |
| CPE 715                           | Drug Delivery (3)                                  |
| CPE 715                           | Polymer Science & Technology (3)                   |
| CPE 731                           | Transport Phenomenon (3)                           |
| CPE 732                           | Advanced Transport Phenomena (3)                   |
| CPE 751                           | Basic Rheology (3)                                 |
| ME 767                            | Molecular Biomimetics (3)                          |
| ME 790                            | Biomedical Microdevices (3)                        |
| PHCH 730/731                      | Biopharmaceuticals & Pharmacokinetics (3)          |
| PHCH 862/863                      | Pharmaceutical Equilibruium (3)                    |
| РНСН 870                          | Advanced Pharmaceutical Biotechnology (4)          |
| 2. Advanced Biological Sciences   |                                                    |
| РНСН 860                          | Principles & Practice of Chemical Biology (3)      |
| CHEM 760                          | Intro to Chemistry in Biology (3)                  |
| MDCM 701                          | Biomedicinal Chemistry (3)                         |
| ANAT 845 / BIOL 560               | Histology (3)                                      |
| MICR 808 / BIOL 503               | Immunology (3)                                     |
| MICR 825 / BIOL 512               | Virology (3)                                       |
| BIOL 752                          | Cell Biology (3)                                   |
| BREADTH                           | 18 hours minimum                                   |

Choose appropriate courses with advisor from master list in the following categories:

1. Statistics (1 course min)

2. Sciences (1 course min)

3. Advanced Engineering (1 course min)

### MINIMUM HOURS REQUIRED FOR DEGREE: 30



## Master of Engineering in Bioengineering **Track: Computational Bioengineering**

Proposed for students entering Fall 2021 and beyond

Track Director: Suzanne Shontz, Ph.D. (shontz@ku.edu)

| CORE                               | 6 hours required                                      |
|------------------------------------|-------------------------------------------------------|
| CPE 756                            | Intro to Bioengineering (3)                           |
| BIOE 800                           | Bioengineering Colloquium (.5) (2 total hours req)    |
| BIOE 801                           | Responsible Conduct of Research in Engineering (1)    |
| DEPTH                              | 9 hours required                                      |
| 1. FUNDAMENTALS COURSE (1 cours    | e minimum)                                            |
| EECS 639                           | Introduction to Scientific Computing (3)              |
| EECS 730                           | Introduction to Bioinformatics (3)                    |
| EECS 731                           | Introduction to Data Science (3)                      |
| BINF 701                           | Computational Biology I (5) - cannot take w/ EECS 730 |
| 2. ELECTIVE COURSES (1 course mini | mum)                                                  |
| BINF 702                           | Computational Biology II (5)                          |
| EECS 660                           | Fundamentals of Computer Algorithms (3)               |
| EECS 738                           | Machine Learning (3)                                  |
| EECS 739                           | Parallel Scientific Computing (3)                     |
| EECS 740                           | Digital Image Processing (3)                          |
| EECS 837                           | Data Mining (3)                                       |
| EECS 839                           | Mining Special Data (3)                               |
| ME 751                             | Experimental Methods in Biomechanics (3)              |
| ME 755                             | Computer Simulation in Biomechanics (3)               |
| ME 854                             | Continuum Mechanics for Soft Tissues (3)              |
| ME 861                             | Theory of the Finite Element Method (3)               |
| EECS 868 or CPE 778                | Math Opt w/ Applications or Applied Opt. Methods (3)  |
| CE 861                             | Finite Element Methods for Solid Mechanics (3)        |
| AE 746                             | Computational Fluid Dynamics (3)                      |
| BIOL 952                           | Introduction to Molecular Modeling (3)                |
| PRVM 868                           | Bioinformatics Driven Clinical Research (3)           |
| BIOS/STAT 730                      | Applied Linear Regression (3)                         |
| BIOS/STAT 799                      | Introduction to Statistical Genomics (3)              |
| BIOS/STAT 823                      | Introduction to Programming & Applied Stats in R (3)  |

#### BREADTH

#### 9 hours required

Choose appropriate courses from the Master Breadth Course List.

- 1. Math, Statistics, Numerical Methods (1 course minimum)
- 2. Life Sciences (1 course minimum)
- 3. Advanced Engineering (700 or above) (1 course minimum)

#### MINIMUM HOURS REQUIRED FOR DEGREE: 30



#### MATH, STATISTICS & NUMERICAL METHODS

|            | ATISTICS & NOMENICAL METHODS                     |
|------------|--------------------------------------------------|
| Math       |                                                  |
| MATH 590   | Linear Algebra (3)                               |
| MATH 596   | Math in Biomedical Research (3) <b>◊</b>         |
| MATH 611   | Fourier Analysis of Time Series (3) <b>S</b> *   |
| MATH 646   | Complex Variable and Applications (3)            |
| MATH 647   | Applied PDEs (3)                                 |
| MATH 648   | Calculus of Variations (3) <b>S</b>              |
| MATH 724   | Combinatorial Mathematics (3) F*                 |
| MATH 725   | Graph Theory (3) <b>S</b> *                      |
| MATH 750   | Stochastic Adaptive Control (3) <b>S</b> *       |
| MATH 765   | Mathematical Analysis (3) <b>F</b>               |
| MATH 766   | Mathematical Analysis II (3) S                   |
| MATH 790   | Linear Algebra II (3) <b>F</b>                   |
| MATH 791   | Modern Algebra I (3) <b>S</b>                    |
| MATH 865   | Stochastic Processes I (3) S                     |
| PHSX 718   | Mathematical Methods of Physical Sci (3) F       |
| PHSX 721   | Chaotic Dynamics (3) *** <b>F</b>                |
|            |                                                  |
| Statistics |                                                  |
| BIOL 570   | Intro to Biostatistics (3) F                     |
| BIOL 841   | Biometry I (5) <b>F</b>                          |
| BIOL 943   | Multivariate Data Analysis (3) F*                |
| BIOS 714   | Biostatistics - Fund Biostatics I (3) F          |
| BIOS 717   | Biostatistics - Fund Biostatics II (3) S         |
| BIOS 720   | Biostatistics - Analysis of Variance (3) F       |
| BIOS 730   | Biostatistics - Appld Linear Regression (3) F    |
| BIOS 740   | Biostatistics - Applied Multivariate Mthds (3) S |
| BIOS 810   | Biostatistics - Clinical Trials (3) S            |
| BIOS 835   | Biostatistics - Categorical Data Analysis (3) F  |
| BIOS 840   | Biostatistics - Linear Regression (3) F          |
| BIOS 871   | Biostatistics - Mathematical Statistics (3) F    |
| BIOS 830   | Biostatistics - Experimental Design (3) S        |
| ESPY 710   | Introduction to Statistical Analysis (3) F       |
| ESPY 711   | Lab for Introduction to Stats Analysis (1) F     |
| MATH 605   | Applied Regression Analysis (3) <b>F</b> *       |
| MATH 627   | Probability (3) <b>F</b>                         |
| MATH 628   | Mathematical Theory of Statistics (3) S          |
| MATH 727   | Probability Theory (3) <b>F</b>                  |
| MATH 728   | Statistical Theory (3) <b>S</b>                  |
|            |                                                  |

#### Numerical Methods

| AE 725   | Optimization and Structural Design (3) <b>◊</b> |
|----------|-------------------------------------------------|
| AE 746   | Computational Fluid Dynamics (3) S              |
| BINF 701 | Bioinformatics I (5) F                          |
| BINF 702 | Bioinformatics II (5) <b>S</b>                  |
| CE 861   | Finite Element Mthds- Solid Mechanics (3) S     |
| CPE 701  | Methods of Chem and Petro Calculations (3) F    |
| CPE 778  | Optimization of Engineering Systems (3) S       |
| EECS 639 | Introduction to Scientific Computing (3) F      |
| EECS 739 | Parallel Scientific Computing (3) <b>S</b>      |
| EECS 781 | Numerical Analysis I (3) F                      |

#### MASTER BREADTH COURSE LIST

Revised: August 2019

| ECS 782  | Numerical Analysis II (3) <b>S</b>                                                                                                        |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------|
| ECS 868  | Math, Optimization with Applications (3) FO                                                                                               |
| 1ATH 591 | Applied Numerical Linear Algebra (3) <b>S</b> *                                                                                           |
| 1ATH 780 | Numerical Analysis of Linear Systems (3)                                                                                                  |
| 1ATH 783 | Applied Numerical Analysis of PDEs (3) S                                                                                                  |
| 1ATH 881 | Adv. Numerical Linear Algebra (3) F                                                                                                       |
| 1ATH 882 | Adv. Numerical Differential Equations (3) S*                                                                                              |
| 1E 702   | Mechanical Engineering Analysis (3) F                                                                                                     |
| 1E 788   | Optimal Estimation (3) F 🛇                                                                                                                |
| 1E 860   | Adv. Mechanical Engr. Problems                                                                                                            |
| 1E 861   | Theory of the Finite Element Method (3) <b>F</b>                                                                                          |
| 1E 862   | Finite Element Mthd -Transient Analysis (3) S*                                                                                            |
| 1E 961   | FEM for Nonlinear Probs in Solid Mech (3)***                                                                                              |
|          | ECS 868<br>IATH 591<br>IATH 780<br>IATH 783<br>IATH 881<br>IATH 882<br>IE 702<br>IE 702<br>IE 788<br>IE 860<br>IE 861<br>IE 861<br>IE 862 |

#### ENGINEERING

| All 700 + Eng | r courses count. Suggested courses include:   |
|---------------|-----------------------------------------------|
| AE 709        | Structural Composites (3) F*                  |
| AE 781        | Introduction Adaptive Aerostructures (3) S    |
| CE 710        | Structural Mechanics (3) F*                   |
| CE 767        | Intro to Fracture Mechanics (3) <b>S*</b>     |
| CPE 715       | Polymer Science and Technology (3)            |
| CPE 715       | Drug Delivery (3) S                           |
| CPE 732       | Advanced Transport Phenomena II (3) S         |
| CPE 751       | Basic Rheology (3) *** <b>S</b>               |
| CPE 752       | Tissue Engineering (3)                        |
| CPE 778       | Applied Optimization Techniques (3) <b>S*</b> |
| EECS 644      | Intro Digital Signal Processing (3) F         |
| EECS 730      | Intro to Bioinformatics (3)                   |
| EECS 731      | Introduction to Data Science (3) FO           |
| EECS 738      | Machine Learning (3)                          |
| EECS 739      | Parallel Scientific Computing (3)             |
| EECS 740      | Digital Image Processing (3)                  |
| EECS 744      | Digital Signal Processing (3) S*              |
| EECS 837      | Data Mining (3)                               |
| EECS 861      | Random Signals & Noise (3) <b>F</b>           |
| ME 722        | Modeling Dynamics of Mech. Sys. (3) <b>S*</b> |
| ME 750        | Human Motion Biomechanics (3) F*              |
| ME 751        | Experimental Biomechanics (3) ***F            |
| ME 752        | Acoustics (3) <b>S*</b>                       |
| ME 753        | Bone Biomechanics (3) ***S                    |
| ME 754        | Biomedical Optics (3) S                       |
| ME 755        | Computer Simulation Biomechanics (3) F*       |
| ME 757        | Biomechanical Systems (3) <b>S</b> *          |
| ME 758        | Physiological Systems (3) <b>S*</b>           |
| ME 760        | Biomedical Product Design (3) S               |
| ME 765        | Biomaterials (3) F                            |
| ME 767        | Molecular Biomimetics (3)                     |
| ME 790        | Biomedical Microdevices (3) <b>◊</b>          |
| ME 854        | Continuum Mechanics for Soft Tissues (3) S    |
| ME 890        | Research Methods (3) S                        |
| ME 990        | Advanced Biomaterials (3) F                   |
|               |                                               |

#### **BIOLOGICAL SCIENCES**

| ANAT 832        | Electron Micro Tec (3)                         |
|-----------------|------------------------------------------------|
| ANAT 845        | Histology (2)                                  |
| BIOL 503        | Immunology (3) F                               |
| BIOL 560        | Histology (3) S                                |
| BIOL 600        | Intro to Biochemistry (3)                      |
| BIOL 636        | Biochemistry I (3) <b>F</b>                    |
| BIOL 637        | Intro Biochemistry Laboratory (2) F            |
| BIOL 638        | Biochemistry II (3) <b>S</b>                   |
| BIOL 639        | Advanced Biochemistry Laboratory (2) S         |
| BIOL 644        | Comparative Animal Physiology (3) F*           |
| BIOL 546        | Mammalian Physiology (4)                       |
| BIOL 650        | Advanced Neurobiology (3) S                    |
| BIOL 768        | Plant Molecular Biology (3)                    |
| BIOL 673        | Cell and Mol Neurobiology (3) F*               |
| BIOL 688        | Molecular Biology of Cancer (3) F              |
| BIOL 750        | Advanced Biochemistry (3) ***S                 |
| BIOL 752        | Cell Biology (3) F                             |
| BIOL 754        | Brain Diseases & Neurological Disorders (3)    |
| BIOL 755        | Mechanisms of Development (3) <b>◊</b>         |
| BIOL 757        | Carcinogenesis & Cancer Biology (3) 🛇          |
| BIOL 772        | Gene Expression (3) <b>S</b>                   |
| BIOL 775        | Chemistry of the Nervous System (3) <b>S*</b>  |
| BIOL 841        | Biometry I (3) <b>F</b>                        |
| BIOL 895        | Human Genetics (3) <b>F</b>                    |
| BIOL 918        | Modern Biochemical and Biophysical Mthds (4) S |
| BIOL 943        | Multivariate Data Analysis (3) <b>F*</b>       |
| BIOL 952        | Intro. Molecular Modeling (3) <b>S</b> *       |
| <b>MICR 808</b> | Immunology (3) <b>S</b>                        |
| MICR 812        | Molecular Virology & Pathogenesis (2) F        |
| <b>MICR 820</b> | Bact Genes & Pathogens (3) S                   |
| <b>MICR 825</b> | Virology (3) S                                 |
| NURO 710        | Advanced Neurobiology (3)***                   |

#### CHEMISTRY (BIOCHEM, PHARM CHEM, MED

#### <u>CHEM)</u>

CHEM 510 Biological Physical Chemistry (3) F\* CHEM 635 Instrumental Mthds of Analysis (2) S CHEM 718 Mathematical Mthds in Physical Sciences (3) F CHEM 720 Fundamentals & Mthds Analyt. Chem (3) F CHEM 740 Principles of Organic Reactions (3) F CHEM 742 Spectroscopic Ident of Organic Comp (3) SU CHEM 750 Intro to Quantum Mechanics (3) F CHEM 760 Intro to Chemistry in Biology (3) F CHEM 820 Analytical Separations (3) F CHEM 824 Spectrochemical Mthds of Analysis (3)\*\*\* CHEM 828 Bioanalysis (3) F CHEM 840 Physical Organic Chemistry (3) S CHEM 852 Statistical Thermodynamics (3) S Molecular Spectroscopy (3)\*\*\* CHEM 856 MDCM 701 Biomedicinal Chemistry (3) F MDCM 703 Advanced Biomedicinal Chemistry (3) S MDCM 790 Principles of Drug Design (3) S MDCM 791 Principles of Drug Disposition (1) S PHCH 718 Physcl-Chem Prin Solution Dsg Frm (3) S PHCH 730 Biopharmaceutics & Pharmacokinetics (3) F

PHCH 775 Chemistry of the Nervous System (3) S PHCH 850 Solid State Stability and Formation (3) ◊ PHCH 860 Principles & Practice in Chem Biol (3) F PHCH 862 Pharmaceutical Equilibrium (3) F Advanced Pharm Biotechnology (4) S\* PHCH 870 **PHCH 920** Chemical Kinetics (2) S PHCH 972 Drug Stability (2-4) S PHCH 974 Adv Topic: FTIR PHCH 974 Adv Topic: Vaccines PHCH 976 Adv Topic: Biopharmct & Pharmacokin I (3)

#### LIFE SCIENCES

| GSMC 840 | Clinical Observation for Bioengineers (3)          |
|----------|----------------------------------------------------|
| HSES 670 | Intro to Biomechanics (3) S                        |
| HSES 672 | Exercise Physiology (3)                            |
| HSES 805 | Exp and Analysis – Exercise Phys (3) F*            |
| HSES 810 | Advanced Exercise Physiology (3) F*                |
| HSES 825 | Skeletal Muscle Physiology (3) <b>S*</b>           |
| HSES 872 | Exercise & the Cardiovascular System (3) <b>S*</b> |
| HSES 910 | Biochemistry of Exercise (3) S                     |
| PHSL 835 | Integrative Physiology of Exercise (3) S*          |
| PHSL 838 | Advanced Topics – Fundamentals of Imaging          |
| PHSL 844 | Neurophysiology (3) <b>S*</b>                      |
| PHSL 846 | Advanced Neuroscience (5) SU                       |
| PHSL 847 | Developmental Neurobiology (2)                     |
| PHSL 848 | Mol Mechanisms Neurological Disord (3) F*          |
| REHS 862 | Cell & Molecular Basis of Rehab (2) F              |
| REHS 884 | Motor Control & Learning (3) F 🛇                   |
| REHS 887 | Neurorehabilitation (3) S                          |
| REHS 970 | Instrumental Analysis of Human Function (3) F      |

#### **GRADUATE WRITING / ELECTIVE COURSES**

| SPLH 861 | Applications in MATLAB Programming SU      |
|----------|--------------------------------------------|
| ME 790   | Graduate Writing (3) SU                    |
| PHCH 705 | Writing & Communicating Science (3) S      |
| PTRS 889 | Grant Writing (3) S                        |
| PRVM 868 | Biomed Informatics Driven Clinical Resch S |
| ENTR 701 | Entrepreneurship (3)                       |
| ENTR 702 | Financing Your Own Business (3)            |
| ENTR 703 | Marketing Your Own Business (3)            |
| ENTR 704 | Launching Your Own Business (3)            |
| ENTR 850 | Advanced Entrepreneurship (4)              |

#### <u>KEY:</u>

| S: Spring     | *: biannually     |
|---------------|-------------------|
| F: Fall       | ***: Infrequently |
| SU: Summer    | Blue: KUMC Campus |
| ♦: New course |                   |
|               |                   |

Please note these are all subject to change without notice.

Some courses outside of engineering may require a permission number from the course department. Contact the professor or the program assistant of that department for a permission number.

#### University of Kansas-Edwards Campus

#### **Bachelor of Health Sciences**

#### **Program Approval**

#### I. General Information

#### A. Institution

University of Kansas

#### **B.** Program Identification

Degree Level:Bachelor'sProgram Title:Health SciencesDegree to be Offered:Bachelor of Health SciencesResponsible Department or Unit:School of Professional StudiesCIP Code:51.0000Modality:OnlineProposed Implementation Date:Spring 2021

Total Number of Semester Credit Hours for the Degree: 120

**II. Clinical Sites:** Does this program require the use of Clinical Sites? No

#### **III. Justification**

The School of Professional Studies at the KU Edwards Campus in Overland Park, in collaboration with KU Medical Center (KUMC) and Johnson County Community College (JCCC), proposes to create a new online undergraduate degree, the Bachelor of Health Sciences (BHS). The program is designed for undergraduate students with a strong interest in a career in health sciences who have already earned an associate's degree or equivalent hours and are looking to complete the last two years necessary for a bachelor's degree.

The BHS degree will be a Johnson County Education Research Triangle (JCERT) funded, 100% online completion degree for students transferring to KU Edwards. The BHS program will provide students with the opportunity to demonstrate their ability to succeed in courses with content relevant to their anticipated healthcare profession and elective courses will afford students the ability to concentrate in the following areas: Nutrition, Public and Population Health, and Health Management and Policy. The School of Professional Studies has specifically collaborated with the School of Medicine and the School of Health Professions at KUMC in developing an undergraduate health sciences degree that appropriately prepares students to enter the Masters of Public Health (MPH), Master of Science in Clinical Research (MSCR), or Masters in Health Service Administration (MHSA) programs in the Department of Population Health, and the Masters of Science in Dietetics and Nutrition.

With the KU Edwards campus offering baccalaureate degree completion programs, we anticipate students interested in pursuing the BHS to come primarily from community college partners in the KC metro area, including JCCC and Kansas City Kansas Community College, and the Metropolitan Community College in Missouri. As KU-Edwards does not offer lower-division undergraduate (freshman-sophomore) courses, KU Edwards staff and faculty have worked with staff and faculty at metro area 2-year colleges - primarily JCCC - to align course offering and content with KU requirements and needs for seamless transfer of credit and progression from JCCC to Edwards.

Over the past three years, KU Edwards, in collaboration with the dean and faculty of the Division of

Healthcare/Public Safety & Wellness at JCCC, and the Executive Director of the Masters in Public Health Program at KUMC have worked to identify and develop public health and health professional degree pathways beginning at the 2-year college level, continuing through the baccalaureate level, and leading to graduate level. Concurrently, JCCC has been developing a concept for a focus on public health at the associate's levels and KUMC have well-established and respected graduate programs. The newly developed BHS will allow a student to move seamlessly from the public health focus at the 2-year college level to a public health-oriented degree at the baccalaureate level that will in turn prepare the student for a variety of graduate education options as mentioned above. This BHS proposal is in part a product of those three-way discussions between these institutions.

IV. Program Demand: Market Analysis option selected.

#### A. Market Analysis

The Bureau of Labor Statistics reports that employment of healthcare occupations is projected to grow 19% from 2014 to 2024, much faster than the average for all occupations with the addition of 2.3 million new jobs. Employment related to healthcare will account for almost one-third of all new jobs in the nation between 2012 and 2022 according to the U.S. Department of Labor. This sector of the economy is anticipated to show the most robust growth across the US job market.

Within the Kansas City metro area, the Mid-America Regional Council (MARC) reported year over year employment change (January 2019-January 2020) for the Health Services sector of +0.6% with the addition of over 1,000 new jobs. (MARC, 2020). Additionally, MARC reported medical and health services managers was the top occupation sought with 1,458 positions listed during the last 90 day hiring trend based on January 2020 data.

The KU Edwards campus commissioned a market survey and analysis from WhiteSpace Consulting, a Kansas City-based firm, to assess the potential for a Bachelor of Health Sciences degree in the Kansas City metro area. WhiteSpace assessed the market for healthcare occupations, conducted roundtable discussions with potential students, and interviewed the program director of a BHS program in a comparable-sized metro area (the BHS program at Cleveland State University, Cleveland, Ohio, with ~1400 students enrolled in a BHS baccalaureate). Findings from the WhiteSpace market survey indicate that based on national data, student insights and a comparable university's enrollment experience, there is demand for a BHS program in the Kansas City region. The BHS Program Director at Cleveland State University considers relationships with pipeline/articulation agreement partners as critical success factors in developing and continuing enrollment demand. KU Edwards has taken these findings into account in the development, targeting, and curriculum of the proposed online BHS program (see also previous notes on the KUEC-JCCC collaboration, above).

In the Kansas City region, there are limited Bachelor of Health Sciences degree offerings including programs at University of Missouri-Kansas City, Northwest Missouri State University, and University of Missouri-Columbia. The curriculum for KU's BHS differs from these programs by giving students the opportunity to focus coursework on Nutrition, Public and Population Health, and Health Management and Policy. In-state options for undergraduate health science degrees include an on-campus program at Wichita State and an online program at Washburn University.

The KUEC program is distinguished by its close connections with JCCC (to minimize transfer chokepoints and issues), and by the collaboration with relevant KUMC programs (ensuring that the BHS provides graduates with the courses and skills necessary to advance to a graduate program). This bachelor's program was designed explicitly from the start with attention to the transfer students entering the program and the preparation of students to enter specific graduate programs. The degree will leverage strong multi-campus connections to academic and professional programs at KUMC and KU Lawrence to ensure the delivery of a high quality online degree completion program.

| Year           | Headcount Per Year |            | Sem Credit Hrs Per Year |            |
|----------------|--------------------|------------|-------------------------|------------|
|                | Full- Time         | Part- Time | Full- Time              | Part- Time |
| Implementation | 10                 | 0          | 300                     | 0          |
| Year 2         | 10                 | 10         | 600                     | 150        |
| Year 3         | 10                 | 15         | 900                     | 375        |

#### V. Projected Enrollment for the Initial Three Years of the Program

#### VI. Employment

**National Perspective:** The Bureau of Labor Statistics (BLS) reports that employment of healthcare occupations is projected to grow 19% from 2014 to 2024, much faster than the average for all occupations with the addition of 2.3 million new jobs. Employment related to healthcare will account for almost one-third of all new jobs in the nation between 2012 and 2022. This sector of the economy is anticipated to show the most robust growth across the US job market. Health science degrees can prepare graduates to take advantage of these expanding opportunities in many different health-related professions. The Department of Labor lists a total of 112 careers under its Health Sciences classification. Of these 112 careers, 88% are classified as "Bright Outlook," designating careers for which the Department of Labor projects 10% or greater employment increase between 2016 and 2026 or 100,000 or more job openings. BLS furthermore projects that nationwide, employment of medical and health services managers is projected to grow 18% from 2018 to 2028, much faster than the average for all occupations.

**Regional Perspective:** Within the Kansas City region the biomedical life sciences, including degrees in health administration and health related professions, is identified as one of five key industries and sectors by the Mid-America Regional Council (MARC) using employment and other economic data. Their 2019 Education Asset Inventory indicates talent must be developed for this sector to grow, and in some occupations the number of degrees awarded in the region does not meet demand. Jobs EQ notes total demand (replacement and growth) in this industry is expected to add 12,348 jobs in the Kansas City region over the next five years. Medical and Health Services Managers (BLS Code 11-9111), in particular, are projected for strong growth in Kansas (11% growth 2016-2026, 340 projected openings, with a mean annual salary of \$108,000).

#### VII. Admission and Curriculum

#### A. Admission Criteria

Students must apply to KU Edwards and be admitted by the School of Professional Studies. Prior to entering the program, students must complete two (2) years of undergraduate college course work with a total of 60 semester credit hours and a cumulative GPA of 2.0.

#### **B.** Curriculum

The proposed Bachelor of Health Sciences program is unique because it draws upon coursework from multiple programs and disciplines. The flexible curriculum of this science program allows students to create an academic experience consistent with their healthcare career goals.

The proposed Bachelor of Health Sciences degree is comprised of six parts:

- KU Core Requirements: 24 credit hours
- Foundational Science Courses: 19 credit hours
  - BIOL 150 Principles of Molecular and Cellular Biology
  - BIOL 152 Principles of Organismal Biology

- CHEM 130 General Chemistry I
- MATH 101 College Algebra
- MATH 365 Elementary Statistics
- Health Sciences Core Courses: 32 credit hours
  - BIOL 240 Fundamentals of Human Anatomy
  - BIOL 246 Principles of Human Physiology
  - BTEC 310 Scientific Communications or HMGT 310 Health Communication
  - BTEC 501 Biotechnology Ethics and Responsible Conduct of Research or HSCI 488 Ethics in Health Professions
  - HSES 371 Medical Terminology for Health Professionals
  - HSCI 336 Microbiology in the Health Sciences
  - HSCI 340 Introduction to Public Health
  - HMGT 300 Introduction to Healthcare Management
  - HMGT 305 Health Policy & Healthcare Systems
  - HMGT 350 Professional Development in the Health Sciences
  - LA&S 172 Exploring Health Professions
- Health Science Elective Courses: 24 credit hours of the courses below
  - BIOS 704 Principles of Statistics in Public Health
  - EVRN 543 Natural Hazards and Environmental Risks
  - HSCI 320 Principles of Nutrition
  - HSCI 420 Nutrition through the Life Cycle
  - HSCI 421 Public Health Nutrition
  - HSCI 422 Nutrition Assessment
  - HSCI 440 Introduction to Epidemiology
  - HSCI 441 Population Health
  - HSCI 445 Introduction to Environmental Health
  - HSES 308 Drugs and Diseases in Society
  - HSES 310 Research and Data Analysis in Health, Sport, and Exercise Sciences
  - HSES 331 Sport and Exercise Nutrition
  - HSES 489 Health and Human Sexuality
  - SOC 424 Sociology of Health and Medicine
  - SOC 425 Sociology of Global Health
- Upper-Division General Electives or Minor
  - Eighteen (18) credit hours of upper-division courses (300+ level or above) are allocated for electives or for a minor
- Capstone
  - HSCI 599: Health Science Capstone (3 credit hours)

As noted earlier, since KU Edwards does not offer freshman-sophomore level courses the BHS is designed as an online degree completion program. Students are expected to complete the first two years at another campus, whether that be at one of our metro partners or elsewhere. Courses for Year 1 and 2 listed below are KU courses for which students will transfer in equivalent courses.

| Year 1: Fall | SCH = Semest                                 | er Credit Hours |
|--------------|----------------------------------------------|-----------------|
| Course #     | Course Name                                  | SCH: 15         |
| CHEM 130     | Foundations of Chemistry I (KU Core 3N)      | 5               |
| MATH 101     | College Algebra (KU Core 1.2)                | 3               |
| BIOL 150     | Principles of Molecular and Cellular Biology | 4               |

| ENGL 101Composition (KU Core 2.1) | 3 |
|-----------------------------------|---|
|-----------------------------------|---|

### Year 1: Spring

| Course # | Course Name                                    | SCH: 16 |
|----------|------------------------------------------------|---------|
| COMS 130 | Speaker-Audience Com (KU Core 2.2)             | 3       |
| Core 3H  | Arts and Humanities Course                     | 3       |
| BIOL 152 | Principles of Organismal Biology (KU Core 3.2) | 4       |
| ENGL 102 | Critical Reading and Writing (KU Core 2.1)     | 3       |
| Core 1.1 | Critical Thinking Course                       | 3       |

### Year 2: Fall

| Course # | Course Name                         | SCH: 15 |
|----------|-------------------------------------|---------|
| BIOL 240 | Fundamentals of Human Anatomy       | 3       |
| SOC 104  | Elements of Sociology (KU Core 4.1) | 3       |
| Core 3S  | Social Science Course               | 3       |
|          | Elective/ Minor Course              | 3       |
|          | Elective/ Minor Course              | 3       |

### Year 2: Spring

| Course # | Course Name                           | SCH: 15 |
|----------|---------------------------------------|---------|
| LA&S 172 | Exploring Health Professions          | 3       |
| MATH 365 | Statistics                            | 3       |
| BIOL 246 | Principles of Human Physiology        | 3       |
| Core 4.2 | Culture, Diversity & Global Awareness | 3       |
|          | Elective/ Minor Course                | 3       |

### Year 3 and 4 courses are offered online at the KU Edwards campus.

| Year 3: Fall | Tear 5 and 7 courses are offered online at the five Edwards earlipus. |         |
|--------------|-----------------------------------------------------------------------|---------|
| Course #     | Course Name                                                           | SCH: 14 |
| HSCI 340     | Introduction to Public Health                                         | 3       |
| HMGT 350     | Professional Development in the Health Sciences                       | 2       |
|              | Health Science Elective 1                                             | 3       |
| BTEC 310     | Scientific Communication                                              | 3       |
| HMGT 300     | Intro to Healthcare Management                                        | 3       |

### Year 3: Spring

| Course # | Course Name                        | SCH: 15 |
|----------|------------------------------------|---------|
| HSCI 336 | Microbiology for Health Sciences   | 3       |
| HMGT 305 | Health Policy & Healthcare Systems | 3       |
|          | Health Science Elective 2          | 3       |
|          | Health Science Elective 3          | 3       |
| HSES 371 | Medical Terminology                | 3       |

#### Year 4: Fall

| Course # | Course Name                                | SCH: 15 |
|----------|--------------------------------------------|---------|
|          | Health Science Elective 4                  | 3       |
|          | Health Science Elective 5                  | 3       |
|          | Health Science Elective 6                  | 3       |
|          | Elective/ Minor Course                     | 3       |
| HSCI 488 | Ethics in Health Professions (or BTEC 501) | 3       |

#### Year 4: Spring

| Course # | Course Name                                           | SCH: 15 |
|----------|-------------------------------------------------------|---------|
|          | Health Science Elective 7                             | 3       |
|          | Health Science Elective 8                             | 3       |
|          | Elective/ Minor Course                                | 3       |
|          | Elective/ Minor Course                                | 3       |
| HSCI 599 | Capstone, Internship, or Research Project (KU Core 6) | 3       |

#### VIII. Core Faculty

Note: \* Next to Faculty Name Denotes Director of the Program, if applicable FTE: 1.0 FTE = Full-Time Equivalency Devoted to Program

| Faculty Name         | Rank                                                  | Highest<br>Degree | Tenure<br>Track<br>Y/N | Academic Area of<br>Specialization                          | FTE to<br>Proposed<br>Program |
|----------------------|-------------------------------------------------------|-------------------|------------------------|-------------------------------------------------------------|-------------------------------|
| New Faculty          | Program Director                                      | Ph.D.             | N                      | TBD                                                         | 1.0                           |
| Mark Jakubauskas     | Director for Research<br>and Innovation &<br>Lecturer | Ph.D.             | N                      | Environmental Studies,<br>Environmental Health              | 0.25                          |
| Won Choi             | Vice Chair &<br>Professor                             | Ph.D.             | Y                      | Public and Population<br>Health                             | 0.25                          |
| Sarah Kessler        | Associate Professor                                   | Ph.D.             | Y                      | Public and Population<br>Health                             | 0.25                          |
| Danielle Christifano | Research Assistant<br>Professor                       | Ph.D.             | Y                      | Dietetics and Nutrition                                     | 0.25                          |
| Heather Gibbs        | Assistant Professor                                   | Ph.D., RD         | Y                      | Dietetics and Nutrition                                     | 0.25                          |
| Brendan Mattingly    | Lecturer & Program<br>Director for MCDB               | Ph.D.             | N                      | Molecular, Cellular, and<br>Developmental Biology<br>(MCBD) | 0.25                          |
| Benford Mafuvadze    | Lecturer                                              | Ph.D.             | Ν                      | Molecular Biology                                           | 0.25                          |
| Jack Treml           | Professor of Practice                                 | Ph.D.             | N                      | Biotechnology,<br>Immunology                                | 0.25                          |

| Randy Logan  | Professor of Practice<br>& Program Director<br>for Biotechnology | Ph.D. | Ν | Biotechnology           | 0.25 |
|--------------|------------------------------------------------------------------|-------|---|-------------------------|------|
| Deb Sullivan | Professor & Chair,<br>Dietetics & Nutrition                      | Ph.D. | Y | Dietetics and Nutrition | 0.25 |

### IX. Expenditure and Funding Sources (List amounts in dollars. Provide explanations as necessary.)

| A. EXPENDITURES                                                       | First FY  | Second FY | Third FY  |
|-----------------------------------------------------------------------|-----------|-----------|-----------|
| Personnel – Reassigned or Existing Positions                          |           |           |           |
| Faculty                                                               | \$30,000  | \$37,500  | \$45,000  |
| Administrators (other than instruction time)                          | \$27,500  | \$28,050  | \$28,611  |
| Graduate Assistants                                                   |           |           |           |
| Support Staff for Administration ( <i>e.g., secretarial</i> )         |           |           |           |
| Fringe Benefits (total for all groups)                                | \$12,557  | \$13,739  | \$14,933  |
| Other Personnel Costs                                                 |           |           |           |
| Total Existing Personnel Costs – Reassigned or Existing               | \$70,057  | \$79,289  | \$88,544  |
| Personnel – New Positions                                             |           |           |           |
| Faculty                                                               | \$90,000  | \$90,000  | \$90,000  |
| Administrators (other than instruction time)                          | \$30,000  | \$30,000  | \$30,000  |
| Graduate Assistants                                                   |           |           |           |
| Support Staff for Administration ( <i>e.g.</i> , <i>secretarial</i> ) |           |           |           |
| Fringe Benefits (total for all groups)                                | \$30,913  | \$30,913  | \$30,913  |
| Other Personnel Costs                                                 |           |           |           |
| Total Existing Personnel Costs – New Positions                        | \$150,913 | \$150,913 | \$150,913 |
| Start-up Costs - One-Time Expenses                                    |           | L.        |           |
| Library/learning resources                                            |           |           |           |
| Equipment/Technology                                                  |           |           |           |
| Physical Facilities: Construction or Renovation                       |           |           |           |
| Other- Online Course Development                                      | \$15,000  | \$15,000  |           |
| Total Start-up Costs                                                  | \$15,000  | \$15,000  | \$0       |
| <b>Operating Costs – Recurring Expenses</b>                           |           |           |           |
| Supplies/Expenses                                                     | \$2,500   | \$2,500   | \$2,500   |
| Library/learning resources                                            | \$500     | \$500     | \$500     |
| Equipment/Technology                                                  |           |           |           |
| Travel                                                                |           |           |           |

| Other                 | \$11,400  | \$11,400  | \$11,400  |
|-----------------------|-----------|-----------|-----------|
| Total Operating Costs | \$14,400  | \$14,400  | \$14,400  |
|                       |           |           |           |
| GRAND TOTAL COSTS     | \$250,370 | \$259,602 | \$253,857 |

| <b>B. FUNDING SOURCES</b><br>(projected as appropriate)                                           | First FY<br>(New) | Second FY<br>(New) | Third FY<br>(New) |
|---------------------------------------------------------------------------------------------------|-------------------|--------------------|-------------------|
| Tuition / State Funds                                                                             | \$100,920         | \$252,300          | \$428,910         |
| Student Fees                                                                                      | \$34,965          | \$87,413           | \$148,601         |
| Other Sources (JCERT)                                                                             | \$114,485         | \$0                | \$0               |
| GRAND TOTAL FUNDING                                                                               | \$250,370         | \$339,713          | \$577,511         |
| <b>C. Projected Surplus/Deficit</b> (+/-)<br>(Grand Total Funding <i>minus</i> Grand Total Costs) | \$0               | \$80,111           | \$323,654         |

#### X. Expenditures and Funding Sources Explanations

#### A. Expenditures

#### **Personnel – Reassigned or Existing Positions**

The BHS program utilizes existing courses that are currently offered at KU Edwards, such as Biotechnology, Nutrition, Public and Population Health, Environmental Health, Medical Terminology, and Molecular Biology. Cost of instruction will be covered by the existing program until additional offerings are needed. We anticipate needing additional BHS electives in Year 3. Existing KU faculty listed above will be developing and teaching new BHS elective courses once they are needed. New course development funds have been included in the budget. A current academic success coach will be assigned to work with the BHS program. The BHS program will make up 50% of their student load and the BHS program will fund 50% of salary and fringe.

#### **Personnel – New Positions**

The BHS program will be hiring a program director in the first year that will oversee program administration and will teach in the program. The program director's salary has been split between faculty teaching and administration at a rate of .75 and .25 or \$90,000 for his or her faculty teaching responsibilities and \$30,000 for program administration.

#### **Start-up Costs – One-Time Expenses**

In order to ensure a successful launch of the online program, we have designation \$15,000 for online course development for each of the first two years. These funds will provide faculty with additional resources to

development the courses needed for the program.

#### **Operating Costs – Recurring Expenses**

All equipment, library, and supplies have been accounted for in the existing services provided to KU Edwards Students and no additional cost will be associated with the program. The KU Edwards Campus is allocating \$500 each year for instructional resources, \$2,500 each year for recruitment efforts, and \$10,000 each year for marketing efforts. In addition, the program director will receive \$1,400 each year for professional development.

#### **B. Revenue: Funding Sources**

The BHS program is a Johnson County Education and Research Triangle\* (JCERT) funded program. The program will be fully funded through JCERT funds and tuition revenue. No state funds will be utilized. JCERT funds will be used to help fund the program during the implementation year until the program is revenue generating and sustainable on tuition funds alone. BHS students will be charged the standard KU Undergraduate tuition and then will be charged Edwards Campus and Course fees. The standard tuition rate for AY 2020 (and proposed for AY 2021) is \$336.40 per credit hour for all Kansas residents and residents of 11 Missouri counties. Edwards Campus fee is \$76 per credit hour and the course fee is \$40.55 per credit hour. These are standard fees for all courses offered at the Edwards Campus.

\* The Johnson County Education Research Triangle (JCERT) is a unique partnership between Johnson County, the University of Kansas and Kansas State University. Its goal is to create economic stimulus and a higher quality of life through new facilities for research and educational opportunities. In November 2008, Johnson County voters invested in the county's future by voting for a 1/8-cent sales tax to fund JCERT initiatives, including development of the National Food and Animal Health Institute at K-State Olathe; the KU Clinical Research Center in Fairway, Kansas; and here at KU Edwards, the BEST Building with several degree and certificate offerings in business, engineering, science and technology.

#### C. Projected Surplus/Deficit

Given the anticipated costs and revenue, the program is expected to run a deficit in the first year of implementation. JCERT funds will be used to help fund the program during the implementation year until the program is revenue generating and sustainable on tuition funds alone. With the current enrollment estimates, the BHS program is expected to have a revenue surplus. These funds will be utilized to help improve the overall student experience and provide additional funding

#### **XI. References**

- JobsEQ. (2019). Occupation Report for Health Diagnosing and Treatment Practitioners: Kansas City, MO-KS MSA. MidAmerican Regional Council. Retrieved from: <u>http://www.chmuraecon/com/jobseq</u>
- JobsEQ. (2019). Occupation Report for Healthcare Practitioners and Technical Workers: Kansas City, MO-KS MSA. MidAmerican Regional Council. Retrieved from: <u>http://www.chmuraecon/com/jobseq</u>
- JobsEQ. (2019). Occupation Report for Healthcare Social Workers: Kansas City, MO-KS MSA. MidAmerican Regional Council. Retrieved from: <u>http://www.chmuraecon/com/jobseq</u>
- JobsEQ. (2019). Occupation Report for Healthcare Support Worker, All Other: Kansas City, MO-KS MSA. MidAmerican Regional Council. Retrieved from: <u>http://www.chmuraecon/com/jobseq</u>
- Healthcare Occupations: Occupational Outlook Handbook. (2019, September 4). Retrieved from <a href="https://www.bls.gov/ooh/healthcare/home.htm">https://www.bls.gov/ooh/healthcare/home.htm</a>
- Mid-America Regional Council, GradForce Education Asset Inventory for Greater Kansas City, 2017;university websites; College Factual
- Mid-America Regional Council Regional Planning for Greater Kansas City. (n.d.). Retrieved from <u>https://www.marc.org/</u>

- Mid-America Regional Council, Talent to Industry Exchange: A Labor Analysis of the Life Sciences Industry in the Kansas City Region, February 2018
- National Center for Education Statistics (NCES) Home Page, part of the U.S. Department of Education. (n.d.). Retrieved from <u>https://nces.ed.gov/</u>

U.S. Bureau of Labor Statistics. (2020, April 21). Retrieved from https://www.bls.gov/

Usovicz, E. (2019). Undergraduate Health Sciences: Potential Enrollment Assessment in the Kansas City Region (pp. 1–23). White Space Consulting.

#### **Kansas State University**

#### **Bachelor of Integrated Computer Science**

#### **Program Approval**

#### I. General Information

#### A. Institution:

Kansas State University

| B.               | Program Identification   |                                                      |
|------------------|--------------------------|------------------------------------------------------|
|                  | Degree Level:            | Bachelor's                                           |
|                  | Program Title            | Integrated Computer Science                          |
|                  | Degree to be Offered:    | Bachelor of Science & Bachelor of Arts in Integrated |
|                  |                          | Computer Science                                     |
|                  | Responsible Unit:        | College of Arts & Sciences                           |
|                  | CIP Code:                | 11.0199                                              |
| Modality: Hybrid |                          | Hybrid                                               |
|                  | Proposed Implementation: | Fall 2020                                            |

Total Number of Semester Credit Hours for the Degree: 120 (both BA and BS)

**II.** Clinical Sites: Does this program require the use of Clinical Sites? No

#### **III.** Justification

Integrated Computer Science (ICS) combines computer science with domain knowledge from some area of concentration. The degree integrates a concentration from any field of study outside of computer science with computational skills, complementary electives, and a capstone project applying those skills to the concentration area. Integrated Computer Science equips students for a wide variety of possible careers and to become academic, cultural, and industrial leaders who integrate an arts and sciences education with expertise in computer science.

With each passing year, computers play a larger role in our lives. Software shapes how we shop, communicate, vote, collaborate, and even how we think. However, the supply of software developers has not kept pace with demand, and many with computer skills lack the complementary skills that a broad education in the Arts & Sciences supplies: appreciation of aesthetics and design, understanding of our collective human history, insight into social, economic, and psychological effects of software design, and the ability to understand the dynamics of teamwork and cooperation in a software design workspace. At the same time, computational skills are increasingly important across the arts and sciences, in applications ranging from using live data streams to create cutting-edge art to computationally modeling complex biological processes. Indeed, many of our own faculty are re-skilling by learning computer coding to advance their research and creative activities.

What sets this program apart from others is a computer science track that is pragmatic rather than theoretical and based on algebra rather than calculus. This captures students who can benefit and excel within this program and encourages students to attain multi-disciplinary skill and expertise. It will be these unique and high-in-demand combinations that sets our students apart in the job marketplace and equips them to pursue their passions.

We envision graduates entering a wide range of fields, not merely as software engineers but as business leaders, scientists, artists, journalists, and scholars with the software engineering skills that are increasingly essential everywhere. We will produce artists who code, scientists leveraging algorithm-driven models, journalists who dig deep into big data, and entrepreneurs who design and prototype their ideas themselves. A combination of core competency in computer programming, database management, and algorithms along with a broad Arts and Sciences education will serve to create ethical leaders, smart citizens, and skilled employees for advancing the well-being of Kansas, the nation, and the world.

Specifically, this program will prepare students to:

- use in-demand programming languages and software design techniques to address real-world problems in a wide variety of fields;
- leverage programming and database integration skills to advance their career and contribute to their chosen field of concentration;
- consider the broader humanistic and scientific context of problems encountered in software development, and use appropriate domain knowledge to find solutions;
- enter the workforce with a solid core of in-demand computing skills, making them much more employable and effective; and
- understand and abide by the highest ethical standards of their profession and think clearly about the moral dimensions of their work.

#### IV. Program Demand: Market Analysis

The primary markets for this major include:

- on-campus students who wish to combine computer science with another field, as well as students who struggle with or dislike the advanced mathematics required for a pure computer science major; and
- online students pursing a cost-effective credential, including distance and transfer students with 60+ hours of college credit as well as alumni adding an additional degree that can build on (and accept credits from) their previous degree.

**On-Campus Market Analysis:** At Kansas State, there has been a 137% increase in computer science majors over the past decade, despite enrollment caps due to limited seating. Online demand, where physical seating is not a restriction, will to continue to grow. Furthermore, we have seen substantial growth in non-majors combining their chosen fields of study with computer science courses. Nearly 100 non-majors per year enroll in our introductory computer science course.

Across the nation from 2005 to 2015, in courses primarily intended for computer science majors, non-major enrollment grew faster than major enrollment. In introductory courses, major enrollment increased 152%, non-major enrollment by 177%. Similar trends hold for mid-level (majors: 152%; non-majors: 251%) and upper-level courses (majors: 165%; non-majors: 143%) (Computer Research Associates, 2017).

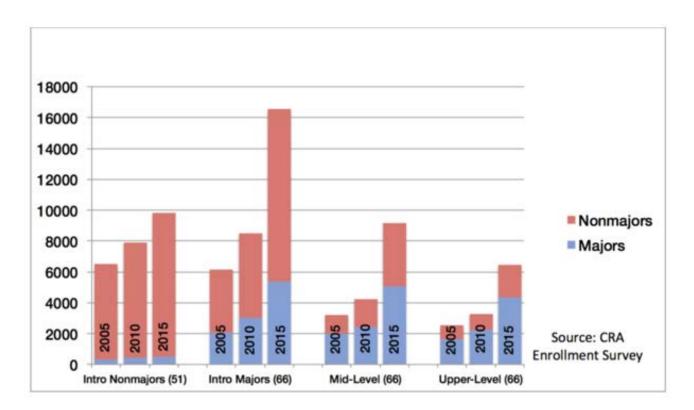



Figure 1. Cumulative nonmajor enrollment (red) and major enrollment (blue) in computing courses at doctoraland non-doctoral granting units from 2005 to 2015.

(Source: Computer Research Associates, 2017)

We estimate that 150 on-campus students not majoring in Computer Science would pursue advanced courses in computer science, and that this number will increase.

#### **Online Market Analysis:**

Computer science is nationally one of the most popular areas of study for online students. According to a Babson/Learning House study of online student preferences, computer science is third among all desired undergraduate majors (Babson Survey Research Group, 2018). Business and psychology remain ahead, but their share of student interest has declined while the computer science share has increased, to 14% of the current total undergraduate online market.

The Educational Advisory Board (EAB) was tasked with finding the best opportunities for online program growth for Kansas State specifically. They identified bachelor's level Computer Science as the leading opportunity: "*Prioritize the development of online bachelor's-level computer science programming. The Forum finds computer science occupations most commonly require a bachelor's degree*" (EAB Global, 2018).

The online bachelor's degree market is not saturated. In 2018, IPEDS reported 27,553 completed computer science bachelor's degrees (EMSI, 2020). Only 6% of these completions were online. There are only 33 online competitors for bachelor's degrees in computer science in the nation.



#### Figure 2. EMSI Labor Analysis (EMSI, 2020)

EMSI labor analysis also indicated there are over 150,000 annual openings across the United States calling for a computer science background. This means there are *far* more new jobs each year than new degree holders to fill them.

Among the 33 online programs, IPEDS reports an average graduating cohort of 54 students. Programs most similar to ours are much larger. We expect our numbers to be in line with our peer institutions charted below (all are online programs):

| Institution                              | Bachelor's Degree<br>Completions | Growth %<br>(2017) | Market Share<br>(2017) |
|------------------------------------------|----------------------------------|--------------------|------------------------|
| Oregon State University                  | 495                              | 58.1%              | 27.8%                  |
| University of Minnesota-<br>Twin Cities  | 345                              | 3.0%               | 19.4%                  |
| University of Utah                       | 125                              | Insufficient Data  | 7.0%                   |
| University of Illinois at<br>Springfield | 96                               | (5.0%)             | 5.4%                   |
| Lewis University                         | 73                               | 108.6%             | 4.1%                   |

The example of Oregon State University is notable, as they have the highest number of degree completions, as well as the fastest growth. Their model is similar to K-State's proposed model. They created an online "Professional Computer Science" degree, marketed to liberal arts majors who find themselves underemployed or seeking a different career. Students can complete only the core courses for the degree regardless of where they did their initial undergraduate program and can finish the program in as little as one year. Since inception in 2013, Oregon State has graduated over 900 students and shows a current growth rate of over 58%. They report nearly 1,500 students currently enrolled in the program (EMSI, 2020).

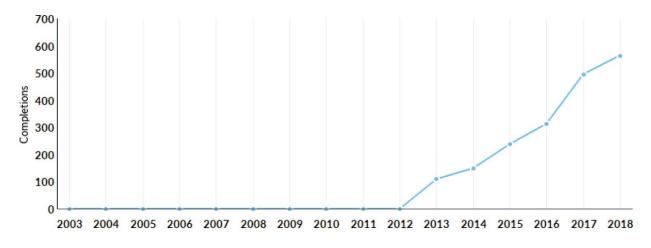



Figure 3. Oregon State University Completions in Computer Science (EMSI, 2020)

## V. Projected Enrollment:

The numbers above suggest that we could have over 1,000 students enrolled in the program within four years. For this reason, we have prepared a scalable set of courses for all of our requirements that can accommodate a large influx of students as needed.

We have also performed several budget simulations based on much lower numbers to minimize our risk and examine the program viability. Our low estimates of enrollment are as follows:

| Year             | Headcount Per Year |            | Sem Credit Hours Per Year |            |  |
|------------------|--------------------|------------|---------------------------|------------|--|
|                  | Full- Time         | Part- Time | Full- Time                | Part- Time |  |
| Implementation   | 20                 | 4          | 520                       | 48         |  |
| <b>Year 2</b> 30 |                    | 6          | 1,440                     | 120        |  |
| Year 3           | 40                 | 8          | 2,610                     | 216        |  |

We believe this is a *very* conservative estimate for the students. We have contingency plans for the number of students enrolled in the ICS program to be much greater than the estimates described above. Due to our approach of using individualized, online instruction, the program can be expanded (or shrunk) very quickly. Instructors will be hired on term appointments and GTAs (and possibly undergraduate teaching assistants) will be hired one semester at a time.

# VI. Employment

A 2018 market research brief from EAB found over 90,000 regional job listings in the field of computer science (EAB Global, 2018). Yet across the entire nation, we produce less than a third of that many computer science graduates. Importantly, 70% of those jobs are outside the traditional tech sector. Our students, with an ability to apply computer science to a wide range of fields, will be well-positioned for this emerging job market.

## Table 1. Bureau of Labor Statistics for Software Developers

| 2019 Median Pay                         | \$107,510 per year |
|-----------------------------------------|--------------------|
| <b>Typical Entry-Level Education</b>    | Bachelor's degree  |
| Work Experience in a Related Occupation | None               |
| On-the-job Training                     | None               |
| Number of Jobs, 2018                    | 1,365,500          |
| Employment Change, 2018-28              | 284,100            |

(U.S. Bureau of Labor Statistics, 2020)

Employers *in our region* posted **213%** more job openings for 'computer and information research scientists' in 2018 than in 2014. Job openings increased **65%** for 'information security analysts' (16,956 postings), **46%** for 'computer systems engineers/architects' (28,184 postings), and **45%** for 'software developers, applications' (104,201 postings) (U.S. Bureau of Labor Statistics, 2020).

The Bureau of Labor Statistics projects significant growth for related fields over the next eight years, as compared to a projected 7% national average for all occupations:

- **31%** for Software Developers
- 28% for Information Security Analysts
- 19% for Computer and Information Research Scientists
- **13%** for all computer occupations

Further, employers demonstrate high demand for related skills including Information security (20,713 job postings), Python (43,049), and Software development (75,277).

# VII. Admission and Curriculum

## A. Admission Criteria

Normal Kansas State University admissions criteria for incoming, transfer, and international students will apply for the proposed program. No additional criteria are included.

# B. Curriculum

The curriculum consists of 29 credits in computer science, along with a 12-credit core in the College of Arts & Sciences that will introduce students to applications of computer science in the digital arts and humanities, the cultural impacts of technology, and moral reasoning and professional ethics in integrated computer science. In addition, all students must complete a concentration with at least 18 credits in a single field, or the interdisciplinary concentration. In the sample curriculum below, the concentration is in philosophy, and the degree is completed as a BS. Completion as a BA would require a foreign language requirement at the fourth level, and involve slightly different general education courses in social sciences and humanities, but would otherwise be similar.

| Year 1: Fall Semester Ci |                                       | nester Credit Hours |
|--------------------------|---------------------------------------|---------------------|
| Course #                 | Course Name                           | SCH = 13            |
| ENGL100                  | Expository Writing I                  | 3                   |
| CC110                    | Introduction to Computing             | 3                   |
| CC210                    | Fundamental Programming Concepts      | 4                   |
| ANTH204                  | Introduction to Cultural Anthropology | 3                   |

# Year 1: Spring

| Course # | Course Name                             | SCH = 13 |
|----------|-----------------------------------------|----------|
| BIOL198  | Principles of Biology                   | 4        |
| AMETH160 | Introduction to American Ethnic Studies | 3        |
| CC310    | Data Structures and Algorithms I        | 3        |
| ENGL200  | Expository Writing II                   | 3        |

### Year 2: Fall

| Course # | Course Name                                             | SCH = 17 |
|----------|---------------------------------------------------------|----------|
| PHILO386 | Philosophy of Computer Science and Software Engineering | 3        |
| CC315    | Data Structures and Algorithms II                       | 3        |
| CHM110   | General Chemistry                                       | 3        |
| COMM106  | Public Speaking I                                       | 3        |
| BIOL201  | Organismic Biology                                      | 5        |

# Year 2: Spring

| Course # | Course Name                    | <b>SCH = 16</b> |
|----------|--------------------------------|-----------------|
| PHILO305 | Reasons, Decisions and Society | 3               |
| PHILO330 | Moral Philosophy               | 3               |
| CC410    | Advanced Programming           | 4               |
| POLSC135 | Intro Comparative Politics     | 3               |
| XXX      | ELECTIVE                       | 3               |

#### Year 3: Fall

| Course # | Course Name                         | SCH = 15 |
|----------|-------------------------------------|----------|
| CC510    | Computer Systems Administration     | 3        |
| PHILO303 | Writing Philosophy                  | 3        |
| PHILO320 | Symbolic Logic I                    | 3        |
| MATH205  | General Calculus and Linear Algebra | 3        |
| PHILO492 | Computers and Society               | 3        |

# Year 3: Spring

| Course # | Course Name                          | <b>SCH = 14</b> |
|----------|--------------------------------------|-----------------|
| PHILO345 | Worlds, Things and Properties        | 3               |
| PHILO301 | History of Philosophy                | 3               |
| CC560    | Database Essentials                  | 3               |
| PHILO340 | Justification and Reliable Knowledge | 3               |
| XXX      | ELECTIVE                             | 2               |

| Year 4: Fall |                       |          |
|--------------|-----------------------|----------|
| Course #     | Course Name           | SCH = 17 |
| CC535        | Applied Data Science  | 3        |
| MUSIC250     | Music Appreciation    | 3        |
| PHYS115      | Descriptive Physics   | 5        |
| ENGL603      | Topics In Linguistics | 3        |
| XXX          | ELECTIVE              | 3        |

### Year 4: Spring

| Course #                                 | Course Name                            | SCH = 15 |
|------------------------------------------|----------------------------------------|----------|
| ENGL326                                  | Introduction to the Digital Humanities |          |
| PHILO510                                 | Symbolic Logic II                      | 3        |
| HIST311                                  | Race and US Foreign Relations          | 3        |
| CC590                                    | Topics in Applied Computer Science     | 3        |
| XXX                                      | ELECTIVE                               | 3        |
| Total Number of Semester Credit Hours120 |                                        |          |

#### VIII. Core Faculty

FTE: 1.0 FTE = Full-Time Equivalency Devoted to Program

The core faculty for the Integrated Computer Science program consists of Dr. Michael Wesch (who will also be the program administrator), core faculty from Arts & Sciences who teach the core ICS A&S courses, and five faculty from Computer Science. There will be many more faculty involved that are not included here who are already teaching other degree courses as part of existing programs. These faculty represent the core faculty who will meet regularly to guide and assess the program.

| Faculty Name            | Rank                               | Highest<br>Degree | Tenure<br>Track<br>Y/N | Academic Area of<br>Specialization | FTE to Proposed<br>Program |
|-------------------------|------------------------------------|-------------------|------------------------|------------------------------------|----------------------------|
| * Michael Wesch         | Professor                          | PhD               | Y                      | Anthropology                       | 0.25                       |
| Graham Leach-<br>Krouse | Associate<br>Professor             | PhD               | Y                      | Philosophy                         | 0.125                      |
| Mark Crosby             | Associate<br>Professor             | PhD               | Y                      | English                            | 0.125                      |
| Ryan Klataske           | Instructor                         | PhD               | N                      | Anthropology                       | 0.125                      |
| Russell Feldhausen      | Instructor                         | MS                | N                      | Computer Science                   | 0.375                      |
| Emily<br>Alfs-Votipka   | Instructor                         | MS                | Ν                      | Computer Science                   | 0.375                      |
| Joshua Weese            | Teaching<br>Assistant<br>Professor | PhD               | N                      | Computer Science                   | 0.125                      |
| Lior Shamir             | Associate<br>Professor             | PhD               | Y                      | Computer Science 0.125             |                            |
| Nathan Bean             | Instructor                         | MS                | Ν                      | Computer Science                   | 0.125                      |

\* Denotes Program Administrator

# IX. Expenditure and Funding Sources

| A. EXPENDITURES                                         | First FY  | Second FY | Third FY  |
|---------------------------------------------------------|-----------|-----------|-----------|
| Personnel – Reassigned or Existing Positions            |           |           |           |
| Faculty                                                 | \$146,295 | \$149,221 | \$152,205 |
| Administrators (other than instruction time)            | \$19,662  | \$20,956  | \$21,255  |
| Graduate Assistants                                     | \$32,000  | \$40,800  | \$49,939  |
| Support Staff for Administration (e.g., secretarial)    | \$12,000  | \$12,240  | \$12,485  |
| Fringe Benefits (total for all groups)                  | \$58,466  | \$61,229  | \$63,747  |
| Other Personnel Costs                                   |           |           |           |
| Total Existing Personnel Costs – Reassigned or Existing | \$268,423 | \$284,446 | \$299,631 |
| Personnel – – New Positions                             |           |           |           |
| Faculty                                                 |           |           |           |
| Administrators (other than instruction time)            |           |           |           |
| Graduate Assistants                                     |           |           |           |
| Advising (.5 FTE)                                       | \$30,000  | \$30,600  | \$31,212  |
| Fringe Benefits (total for all groups)                  |           |           |           |
| Other Personnel Costs                                   |           |           |           |
| Total Existing Personnel Costs – New Positions          | \$30,000  | \$30,600  | \$31,212  |
| Start-up Costs One-Time Expenses                        |           |           |           |
| Library/learning resources                              | -         | -         | -         |
| Equipment/Technology                                    | -         | -         |           |
| Physical Facilities: Construction or Renovation         | -         | -         | -         |
| Total Start-up Costs                                    | \$0       | \$0       | \$0       |
| <b>Operating Costs – Recurring Expenses</b>             |           |           |           |
| Supplies/Expenses                                       | \$6,300   | \$12,600  | \$21,000  |
| Library/learning resources                              | \$6,250   | \$6,250   | \$6,250   |
| Equipment/Technology                                    | -         | \$25,000  | \$25,000  |
| Travel                                                  | -         | -         | -         |
| Codio (online learning platform) Fees                   | \$2,642   | \$6,528   | \$11,543  |
| Total Operating Costs                                   | \$15,192  | \$50,378  | \$63,793  |
| GRAND TOTAL COSTS                                       | \$313,615 | \$365,424 | \$394,636 |

| B. FUNDING SOURCES<br>(projected as appropriate)                                           | Current | First FY<br>(New) | Second FY<br>(New) | Third FY<br>(New) |
|--------------------------------------------------------------------------------------------|---------|-------------------|--------------------|-------------------|
| Tuition / State Funds                                                                      |         | \$177,812         | \$487,500          | \$883,125         |
| Student Fees                                                                               |         | \$46,902          | \$128,153          | \$232,287         |
| Other Sources (Global Campus)                                                              |         | \$16,974          | \$46,338           | \$84,004          |
| GRAND TOTAL FUNDING                                                                        |         | \$241,688         | \$661,991          | \$1,199,416       |
|                                                                                            |         |                   |                    |                   |
| <b>C. Projected Surplus/Deficit</b> (+/-) (Grand Total<br>Funding minus Grand Total Costs) |         | (\$71,927)        | \$296,567          | \$804,780         |

### **X. Expenditures and Funding Sources Explanations**

### A. Expenditures

#### Personnel – Reassigned or Existing Positions

All core faculty are currently employed by Kansas State University in the College of Arts & Sciences or College of Engineering. All ICS faculty teach either the core computer science courses (CC 110, CC 210, CC 310, CC 315 and CC 410) or advanced courses (CC 500 and above). Computer Science faculty who teach the core courses (Feldhausen and Alfs-Votipka) teach only online computational core courses, which are used in this degree. Faculty who teach advanced computer science courses (with the exception of Feldhausen) split their teaching time between the traditional Computer Science program and the Integrated Computer Science program (at approximately 33% devoted to integrated computer science courses). All core Computer Science faculty except for Shamir and Weese are already assigned to teach the listed courses as part of their current appointments. Shamir and Weese will start teaching their new courses in year 2. Shamir is already scheduled to increase his teaching load by one course in 2021-2022 and Weese will have additional capacity due to the phasing out of an existing course. No additional faculty or instructor hires are required to initiate or maintain the new program unless program enrollment grows substantially. The percent time dedicated to the program varies by faculty member and the courses taught each year by applying a general rule of 0.125 FTE per in-person course or 0.0625 FTE per online course for 9-month faculty and 0.0417 FTE per online course. Dr. Michael Wesch will assist the Dean of the College of Arts and Sciences in administering the program. This effort is included in the faculty salary line of the budget as one summer month of pay each year. For budgeting purposes, all salaries (faculty, graduate teaching assistants, and administrative support) include a modest 2% pay increase after the first fiscal year.

Computer Science graduate teaching assistants (GTAs) will be required for all computer science courses greater than 20 students, with additional GTAs required for every additional 40 students. Computer science programs and projects are similar to English compositions and works of art in that each are unique and require a great deal of effort to understand and to provide feedback for. Computer Science GTAs are typically paid between \$650 and \$800 biweekly (depending on degree status). In addition, undergraduate teaching assistants (UTAs) are often used to work with students one-on-one during laboratory help sessions and can be used to help reduce the number of GTAs required per course. UTAs have proven to be very effective in this role as they recently were taking the same courses and struggling with the same concepts. UTAs are normally paid between \$11 and \$15 per hour.

#### **Personnel – New Positions**

The budget includes support for an advisor position in the College of Arts and Sciences at .5 FTE. This is appropriate support for an estimate of up to 100 majors in the first three years. Adjustments may be necessary to accommodate further growth.

## **Start-Up Costs – One-Time Expenses**

There are no additional one-time startup expenses associated with the program.

## **Operating Costs – Recurring Expenses**

The cost of the Codio (computer science specific) online learning platform is \$48 per student per semester. This cost will be covered by an existing \$19 per credit hour College of Engineering Equipment Fee that is charged to all students taking computer science courses.

## **B. Revenue: Funding Sources**

The following revenue table assumes that approximately 76% and 24% of all semester credit hours (SCH) are generated by the College of Arts and Sciences (COAS) and the College of Engineering (COE) respectively. All courses from the COE are online and offered through K-State's Global Campus, hence the "hybrid" modality of this proposed degree program.

This analysis assumes that all students will be on-campus students, although the program can be taken completely or partially online. Thus, it is highly likely that there will also be students who will be taking the program online, including both COAS and COE courses. These students will generate even more revenue than our analysis shows.

COAS has a general fee of \$16.70 per credit hour for on-campus courses, while the COE has a general fee of \$80 per credit hour, equipment fee of \$19 per credit hour, and distance education fee of \$190.70 per credit hour. All funds generated by fees will be retained by the generating college depending on the specialization chosen by the student, this percentage could change and may involve courses from additional KSU colleges such as the College of Agriculture, College of Architecture, Planning, and Design, College of Business, College of Veterinary Medicine, and/or Staley School of Leadership Studies. The fee structures for these schools are not factored into this budget analysis.

| Tuition & Fees        | Tuition<br>/SCH | YR 1<br>SCH=<br>568 | Sub-<br>Totals | YR 2<br>SCH=<br>1560 | Sub-<br>Totals | YR 3<br>SCH=<br>2826 | Sub-<br>Totals |
|-----------------------|-----------------|---------------------|----------------|----------------------|----------------|----------------------|----------------|
| In-State On-          |                 |                     |                |                      |                |                      |                |
| <b>Campus Tuition</b> | \$312.50        | 432                 | \$135,000      | 1186                 | \$370,625      | 2148                 | \$671,250      |
| Global Campus         |                 |                     |                |                      |                |                      |                |
| Tuition               | \$312.50        | 137                 | \$42,812       | 374                  | \$116,875      | 678                  | \$211,875      |
| COAS Fees             | \$16.70         | 432                 | \$7,214        | 1186                 | \$19,806       | 2148                 | \$35,871       |
| COE Fees              | \$99.00         | 137                 | \$13,563       | 374                  | \$37,026       | 678                  | \$67,122       |
| COE GC Fees           | \$190.70        | 137                 | \$26,125       | 374                  | \$71,321       | 678                  | \$129,294      |
| Global Campus         |                 |                     |                |                      |                |                      |                |
| Fees                  | \$123.90        | 137                 | \$16,974       | 374                  | \$46,338       | 678                  | \$84,004       |
| Total Revenue         |                 |                     | \$241,688      |                      | \$661,991      |                      | \$1,199,416    |

# C. Projected Surplus/Deficit

Our estimate suggests that this program will be highly profitable from the second year due to the use of existing courses and the hybrid delivery approach. Projected surpluses are also sufficient to maintain appropriate IT support infrastructure throughout the lifetime of the program at no additional cost to the university.

# **XI. References**

Babson Survey Research Group. 2018. Online College Students: comprehensive data on demands and preferences. Download from <u>https://onlinelearningsurvey.com/reports/gradeincrease.pdf</u>. Last accessed April 23, 2020.

Computer Research Associates. 2017. https://cra.org/data/generation-cs/. Last accessed April 23,2020.

EAB Global, Inc. 2018. Market Research Brief: Online Program Opportunity Analysis for Kansas State University (Analysis of Regional Employer Demand and Peer Institution Offerings).

EMSI Economic Model tool. http://economicmodeling.com/ retrieved April 23, 2020.

US Bureau of Labor Statistics. https://www.bls.gov/ooh/computer-and-information-technology/softwaredevelopers.htm, last accessed April 23, 2020

#### Kansas State University

### **Bachelor of Public Health**

#### **Program Approval**

### I. General Information

#### A. Institution

Kansas State University

### **B.** Program Identification

Degree Level:Bachelor'sProgram Title:Public HealthDegree to be Offered:Bachelor of ScienceResponsible Department or Unit:College of Health and Human Sciences/KinesiologyCIP Code:51.2299Modality:HybridProposed Implementation Date:Spring 2021

Total Number of Semester Credit Hours for the Degree: <u>120</u>

II. Clinical Sites: Does this program require the use of Clinical Sites? no

### **III.** Justification

Public health promotes and protects the health of people and the communities where they live, learn, work and play. Public health-trained workers play a key role in addressing challenges facing the health of the public, such as infectious disease outbreaks, obesity and mental health issues, and drug and alcohol addictions. While a doctor treats people who are sick, public health professionals often work to prevent people from getting sick or injured in the first place, and promote wellness by encouraging a variety of healthy behaviors. Despite the increase in public health challenges there is a shortage of qualified public health workers. There are many individuals who are currently employed at local health departments or in healthcare professions who do not yet have a bachelor's degree but would benefit from a degree in public health. In local public health departments across Kansas, 49% of employees have less than a bachelor's degree. Further, a recent state-wide analysis of public health competencies found that the lowest proficiency rating across all tiers for both local health departments and the Kansas Department of Health and Environment was public health science skills, followed closely by policy development/program planning, analytical and assessment skills, and cultural competency (Kansas Public Health Workforce Development Coordinating Council, 2015).

Nationally in 2018, an economic modeling market analysis of 50 existing public health bachelor degree programs found that 70% experienced program growth, with an average growth rate of 37% (top growth was 533% at Southern New Hampshire University. Since only 22% of the 143 institutions offering undergraduate public health programs offered courses online, offering a hybrid program that includes online and in-person course offerings will increase the competitiveness of our program (Emsi, 2020).

Currently, there are limited Bachelor of Science in Public Health (BSPH) degree programs offered regionally. One Nebraska institution and four institutions in Missouri offer BSPH degrees, but there are no BSPH programs in the state of Kansas. Other Kansas institutions offer related degrees such as community health (BSE at the University of Kansas), health science (BHS at Washburn and BS degree at Wichita State University; they also have a minor in public health), or health and human performance (BS at Fort Hays State University). More recently, KU has proposed a BHS (5/28/20). Noteworthy, none of the above mentioned programs include courses

that capture all key domains of undergraduate public health education (Association of Schools & Programs of Public Health, 2012). Our proposed program includes a core set of fundamental public health courses, a 3-course practicum series that provides real-world exposure to public health practice, reinforcing public health electives, and the flexibility to choose additional coursework electives. Thus, we anticipate that the BSPH at Kansas State will attract many new students with public health and other health related career interests to the university. Furthermore, as a collaborative degree with courses offered across multiple departments and colleges, the BSPH program will benefit multiple units and foster cross-campus collaborations. As well, the program has been designed to seek future accreditation by the Council on Education for Public Health.

**IV. Program Demand:** Select one or both of the following to address student demand:

## A. Survey of Student Interest (Not Conducted)

## **B.** Market Analysis

The growth outlook for public health careers is excellent. A public health major provides entrance into a public health career in two fundamental paths through direct employment into entry level public health jobs and as a pathway to graduate level training in public health and other health related fields such as medicine, hospital administration and health policy (Evashwick, Tao, & Arnold, 2014). The U.S. Bureau of Labor Statistics (2020) forecasts growth between 5-25% nationally and 10.7% in Kansas for many of the more popular public health and safety specialists, medical and health services managers, and fitness and wellness coordinators. Key skills in demand include public health management, operations, leadership, and coordinating customer service. Consequently, national public health workforce groups such as the National Consortium for Workforce Development and the de Beaumont Foundation (2015) have called for the development of effective and engaging public health training and academic curricular offerings to prepare public health workers with strategic skills and expertise to meet the growing public workforce demand.

To assess local need for a BSPH degree, we distributed a brief survey at two conferences: the Kansas Governor's Public Health Conference (Wichita, KS) in April 2019 and the National Health Outreach Conference (Fort Worth, TX) in May 2019. Survey respondents were primarily public health professionals in Kansas (e.g., employed at county health departments). The first survey question asked if there was a need for a BSPH program in the state of Kansas. A total of 65 responses were collected between the two locations; of these, 49 (75%) said "Yes," four (6%) said "No," and 12 (18%) were "Unsure." Respondents indicated they saw a "big need" for more trained public health professionals and that a BSPH program would be a "tremendous asset" to the state of Kansas. They also emphasized the importance of offering flexible course options (e.g., online or evening courses) to accommodate working professionals interested in obtaining the degree.

## V. Projected Enrollment for the Initial Three Years of the Program

| Year           | Headcount Per Year |            | Sem Credit Hrs Per Year |            |
|----------------|--------------------|------------|-------------------------|------------|
|                | Full- Time         | Part- Time | Full- Time              | Part- Time |
| Implementation | 20                 | 0          | 680                     | 0          |
| Year 2         | 30                 | 0          | 1,650                   | 0          |
| Year 3         | 40                 | 0          | 2,845                   | 0          |

## VI. Employment

As mentioned above, the U.S. Bureau of Labor Statistics (2020) has documented a high demand for professionals skilled in public health. In addition, there is a large need for educated health professionals nationally and in the state of Kansas, particularly in rural areas of Kansas. The shortage of public health workers is expected to grow as many individuals in the public health field have plans to retire in the next 10 years.

The most common careers for students with a bachelor's degree in public health are research and community education. There is increasing demand both nationally and in Kansas for individuals in the following related positions (U.S. Bureau of Labor Statistics, 2020):

- Health Specialties Teachers, Postsecondary (+26% nationally, +23% in Kansas)
- Community Health Worker (+18% nationally, +10% in Kansas)
- Health Educator (+15% nationally, +10% in Kansas)
- Occupational Health and Safety Specialists (+8% nationally, +6% in Kansas)
- Fitness and Wellness Coordinators (+11% nationally, +5% in Kansas)

Public Health employment titles and median national annual wages include Health Educator: \$53,940; Environmental Scientists and Specialists: \$69,400; and Emergency Management and Preparedness Coordinator: \$72,760. Overall, the U.S. Bureau of Labor Statistics (2020) forecasts 5-25% growth in many of the more popular public health careers between 2020 and 2024.

At the state of Kansas Department of Health and Environment (KDHE), there are 36 different employment titles aligned with public health (*personal communication with KDHE human resources*). Mean annual wages for Kansas KDHE employees by section range from \$41,988 to \$57,283. Of note in 2017, 84.2% of local health department employees in Kansas and 74.6% of KDHE employees had a bachelor's degree or less (Kansas Public Health Workforce Development Coordinating Council, 2019). Thus, offering this degree increases the level of education and expertise available in Kansas as well as income potential for graduates.

#### VII. Admission and Curriculum

#### A. Admission Criteria

Admissions criteria will be the same as for the B.S. in Kinesiology and include the University Admission Requirements:

Complete the <u>precollege curriculum</u> with at least a 2.0 GPA (2.5 for <u>non-residents</u>) **AND** achieve one of the following:

- A 21 or higher composite score on the ACT assessment **OR**
- A 1060 or higher on the SAT ERW+M if taken after March 2016 **OR**
- A 980 or higher on the SAT CR + M if taken before March 2016 **OR**
- Rank in the top third of your graduating class

#### **B.** Curriculum

| Year 1: Fall | SCH = Semester Credit Hour    |          |
|--------------|-------------------------------|----------|
| Course #     | Course Name                   | SCH = 17 |
| KIN 110      | Introduction to Public Health | 3        |
| BIOL 198     | Principles of Biology         | 4        |
| PSYCH 110    | General Psychology            | 3        |
| ENGL 100     | Expository Writing I          | 3        |

| SOCIO 211 | Introduction to Sociology  | 3   |
|-----------|----------------------------|-----|
| HHS 101   | Introduction to Well-Being | 0.5 |
| HHS 201   | Community Well-Being       | 0.5 |

# Year 1: Spring

| Course # | Course Name                                        | SCH = 17 |
|----------|----------------------------------------------------|----------|
| KIN 220  | Biobehavioral Bases of Physical Activity           | 4        |
| ENGL 200 | Expository Writing II                              | 3        |
| MATH 100 | College Algebra                                    | 3        |
| HHS 202  | Social Well-Being                                  | 0.5      |
| HHS 203  | Financial Well-Being                               | 0.5      |
| ANTH 200 | (Humanities) Introduction to Cultural Anthropology | 3        |
|          | (Unrestricted Elective)                            | 3        |

# Year 2: Fall

| Course # | Course Name                   | SCH = 16.5 |
|----------|-------------------------------|------------|
| CHM 210  | Chemistry I                   | 4          |
| COMM 106 | Public Speaking 1             | 3          |
| FNDH 311 | Health Promotion and Behavior | 3          |
| HHS 204  | Physical Well-Being           | 0.5        |
| FNDH 352 | Personal Wellness             | 3          |
|          | (Unrestricted Elective)       | 3          |

# Year 2: Spring

| Course # | Course Name                           | <b>SCH = 15</b> |
|----------|---------------------------------------|-----------------|
| BIOL 330 | Public Health Biology                 | 3               |
| STAT 325 | Introduction to Statistics            | 3               |
| HDFS 301 | Helping Relationships                 | 3               |
| KIN 312  | Methods and Analysis of Public Health | 3               |
| PLAN 315 | Intro to City Planning                | 3               |

## Year 3: Fall

| Course # | Course Name                                        | <b>SCH = 14</b> |
|----------|----------------------------------------------------|-----------------|
| KIN 360  | Anatomy and Physiology                             | 8               |
| DMP313   | Introduction to Epidemiology                       | 3               |
| KIN 418  | Social Determinants and Diversity in Public Health | 3               |
|          |                                                    |                 |

#### Year 3: Spring

| Course # | Course Name                                                  | SCH = 13 |
|----------|--------------------------------------------------------------|----------|
| DMP 314  | Environmental and Public Health                              | 3        |
| ANTH 383 | Plagues: The Co-Evolutionary History of Humans and Pathogens | 3        |
| MC 451   | Health Communication                                         | 3        |
| KIN 618  | Seminar in Public Health Practice                            | 1        |
|          | (Unrestricted Elective)                                      | 3        |

# Year 3: Summer

| Course # | Course Name             | SCH = 3 |
|----------|-------------------------|---------|
| KIN 619  | Public Health Practicum | 3       |

#### Year 4: Fall

| Course #  | Course Name                      | SCH = 12.5 |
|-----------|----------------------------------|------------|
| KIN 419   | Health Policy and Administration | 3          |
| AGRON 335 | Environmental Quality            | 3          |
| GEOG 302  | Cartography & Thematic Mapping   | 3          |
|           | (Unrestricted Elective)          | 3          |
| HHS 301   | Career Well-Being                | 0.5        |

#### Year 4: Spring

| Course # | Course Name                       | SCH = 12 |
|----------|-----------------------------------|----------|
| KIN 622  | Capstone Project in Public Health | 2        |
|          | (Unrestricted Elective)           | 3        |
|          | (Unrestricted Elective)           | 4        |
|          | (Unrestricted Elective)           | 3        |

# Total Number of Semester Credit Hours ..... <u>120</u>

#### VIII. Core Faculty

Note: \* Next to Faculty Name Denotes Director of the Program, if applicable FTE: 1.0 FTE = Full-Time Equivalency Devoted to Program

| Faculty Name             | Rank                   | Highest<br>Degree | Tenure<br>Track<br>Y/N | Academic Area of<br>Specialization                | FTE to<br>Proposed<br>Program |
|--------------------------|------------------------|-------------------|------------------------|---------------------------------------------------|-------------------------------|
| Mary McElroy             | Professor              | Ph.D.             | Y                      | Social Determinants of<br>Physical Activity       | 0.20                          |
| Katie Heinrich           | Associate<br>Professor | Ph.D.             | Y                      | Public Health and Exercise<br>Behavioral Sciences | 0.20                          |
| Emily Mailey             | Associate<br>Professor | Ph.D.             | Y                      | Health Behavior Theories<br>and Interventions     | 0.20                          |
| Gina Besenyi             | Assistant<br>Professor | Ph.D./M.P.H.      | Y                      | Health Promotion,<br>Education, and Behavior      | 0.20                          |
| TBD*<br>Program Director | Associate<br>Professor | Ph.D./M.P.H.      | Y                      | Public Health                                     | 1.0                           |
| TBD                      | Instructor             | M.P.H.            | Ν                      | Public Health                                     | 1.0                           |
| TBD                      | Instructor             | M.P.H.            | N                      | Public Health                                     | 1.0                           |

Number of graduate assistants assigned to this program ...... <u>1.5</u>

### IX. Expenditure and Funding Sources (List amounts in dollars. Provide explanations as necessary.)

| A. EXPENDITURES                              | First FY | Second FY | Third FY |
|----------------------------------------------|----------|-----------|----------|
| Personnel – Reassigned or Existing Positions |          |           |          |
| Faculty                                      | \$68,585 | \$69,957  | \$71,356 |

| Administrators (other than instruction time)                  |           |           |           |
|---------------------------------------------------------------|-----------|-----------|-----------|
| Graduate Assistants                                           | \$23,000  | \$23,000  | \$23,000  |
| Support Staff for Administration (e.g., secretarial)          | \$3,284   | \$3,284   | \$3,284   |
| Fringe Benefits (total for all groups)                        | \$28,460  | \$29,032  | \$29,613  |
| Other Personnel Costs                                         |           |           |           |
| Total Existing Personnel Costs – Reassigned or Existing       | \$123,329 | \$125,273 | \$127,253 |
| Personnel – – New Positions                                   |           |           |           |
| Faculty                                                       |           | \$190,000 | \$193,800 |
| Administrators (other than instruction time)                  |           |           | 1         |
| Graduate Assistants                                           |           |           |           |
| Support Staff for Administration ( <i>e.g., secretarial</i> ) |           |           |           |
| Fringe Benefits (total for all groups)                        |           | \$57,000  | \$58,140  |
| Other Personnel Costs                                         |           |           |           |
| Total Existing Personnel Costs – New Positions                |           | \$247,000 | \$251,940 |
| Start-up Costs One-Time Expenses                              |           |           |           |
| Library/learning resources                                    |           |           |           |
| Equipment/Technology                                          |           |           |           |
| Physical Facilities: Construction or Renovation               |           |           |           |
| Other                                                         |           |           |           |
| Total Start-up Costs                                          |           |           |           |
| <b>Operating Costs – Recurring Expenses</b>                   |           |           |           |
| Supplies/Expenses                                             |           |           |           |
| Library/learning resources                                    |           |           |           |
| Equipment/Technology                                          | \$5,000   | \$1,000   | \$1,000   |
| Travel                                                        | ,         | , ,       | , ,       |
| Other                                                         |           |           |           |
| Total Operating Costs                                         | \$5,000   | \$1,000   | \$1,000   |
| GRAND TOTAL COSTS                                             | \$128,329 | \$373,273 | \$380,193 |

| <b>B. FUNDING SOURCES</b> (projected as appropriate) | Current | First FY<br>(New) | Second FY<br>(New) | Third FY<br>(New) |
|------------------------------------------------------|---------|-------------------|--------------------|-------------------|
| Tuition / State Funds                                |         | \$212,840         | \$516,450          | \$890,485         |
| Student Fees                                         |         | \$6,900           | \$16,250           | \$34,500          |
| Other Sources                                        |         |                   |                    |                   |

| GRAND TOTAL FUNDING                                                                                  | \$219,740 | \$532,700  | \$924,985  |
|------------------------------------------------------------------------------------------------------|-----------|------------|------------|
| <b>C. Projected Surplus/Deficit</b> (+/-)<br>(Grand Total Funding <i>minus</i> Grand Total<br>Costs) | +\$91,411 | +\$159,427 | +\$544,792 |

## X. Expenditures and Funding Sources Explanations

## A. Expenditures

# **Personnel – Reassigned or Existing Positions**

All faculty are currently employed by the Department of Kinesiology in the College of Health and Human Sciences. The percent time dedicated to the program is based on the courses taught each year. An annual costof-living pay increase of 2% was included. Each faculty listed has 40% FTE dedicated towards teaching. Some courses within this degree also fulfill requirements in our B.S. Kinesiology degree. The four existing faculty members who form the core for this degree teach these courses, thus only the portion of their teaching assignment relative to the Public Health program is shown above. Also, the proposed degree will include several core and upper level courses taught by faculty in other units at Kansas State University (e.g., Food, Nutrition, Dietetics, and Health; Veterinary Medicine).

**Calculations** 

4 Faculty (YR 1): 4 FTE = \$342,925; 0.8 total FTE for degree = \$68,585 Benefits (30%) = \$20,576

```
Graduate Assistants: n=1 @$15,000/yr
Benefits (30%) = $6,900
```

Support Staff (10%) = \$3,284 Benefits (30%) = \$985

Total Salary = \$68,585 + \$23,000 + \$3,284 = \$94,869Total Benefits = \$20,574 + \$6,900 + \$985 = \$28,460Total Personal = **\$123,329** 

## **Personnel** – – **New Positions**

A Program Director and two Instructors will be hired during the first year of the program (3 FTE). The Program Director, in addition to administrative and coordination duties, will also teach and have a research component to their appointment. The instructors will teach courses that currently are not being offered at Kansas State University, but are necessary for this new major. A 2% cost of living increase in year 3 was included.

## Start-up Costs – One-Time Expenses

None

## **Operating Costs – Recurring Expenses**

Operating costs for supplies and equipment/technology are based on estimates for each year to develop (YR 1) and maintain the program (YR 2,3) that will be covered by course fees based on student credit hours (see below).

#### **B. Revenue: Funding Sources**

Student Fee explanation: The College of Health and Human Sciences has a \$20 per semester credit hour on all classes in the college. Revenue from this fee is used to support student services in the program (e.g., laboratory supplies, advising, scholarships, etc.). The Department of Kinesiology has a \$15 per semester credit hour on classes in the department. Revenue from this fee is used for instructional and advising support for the department.

Calculations Student Credit Hours YR1: 20 students x 34 SCH = 680 SCH YR2: 30 students x 34 SCH = 1,020 SCH 20 students x 31.5 SCH =  $\underline{630 \text{ SCH}}$ 1,650 SCH YR 3: 40 students x 34 SCH = 1.360 SCH 30 students x 31.5 SCH = 945 SCH 20 students x 27 SCH = 540 SCH 2,845 SCH Tuition YR 1: \$313 x 680 SCH = **\$212,840** YR 2: \$313 x 1,650 SCH = \$516,450 YR 3: \$313 x 2,845 SCH = **\$890,485** Fees (note: \$20/SCH college fee, \$15/SCH department fee) YR 1: 20 students x 7 SCH x \$35 = \$4,900 20 students x 5 SCH x \$20 = \$2,000\$6,900 YR 2: 30 students x 7 SCH x 35 = 7,35030 students x 5 SCH x \$20 = \$3.00020 students x 9.5 SCH x \$20 = \$3,800 20 students x 3 SCH x \$35 = \$2,100\$16,250 YR 3: 50 students x 7 SCH x \$35 = \$12,25050 students x 5 SCH x 20 = \$5.000 30 students x 9.5 SCH x \$20 = \$5,70030 students x 3 SCH x \$35 = \$3,15020 students x 12 SCH x \$35 = \$8,400\$34,500

#### C. Projected Surplus/Deficit

Projections are that the program will generate funds the first year. The second year will have expenses of additional faculty hires, yet will continue to generate funds as the program grows. Our rationale of determining the number of students in the degree above is based on a very conservative estimate of new students to Kansas

State University who would enroll in this degree. Therefore, the projected surplus (or deficit in YR 1) for this degree we believe to be a very conservative estimate. Based on similar degrees from other institutions, we anticipate that enrollment in this degree would be much higher than listed once we are able to market the degree to students interested in public health.

# **XI. References**

Association of Schools & Programs of Public Health. (2012). Framing the future: Recommended critical component elements of an undergraduate major in public health. <u>https://s3.amazonaws.com/aspph-wp-production/app/uploads/2015/02/UGPH-FinalRptPostedforFTFLaunch\_Mar2015.pdf</u>

Emsi (2020, February). Program overview: Public health, general. Emsi Q1 2020 Data Set.

- Evashwick, C., Tao, D., & Arnold, L. (2014). The peer-reviewed literature on undergraduate education for public health in the United States, 2004-2016. Vol. 2: pp. 1-5. *Frontiers in Public Health*, 2:1-5. doi: 10.3389/fpubh.2014.002238.
- Kansas Public Health Workforce Development Coordinating Council. (2015). Kansas public health workforce assessment report.

https://www.kdheks.gov/olrh/download/Kansas Public Health Workforce Assessment Report.pdf

- Kansas Public Health Workforce Development Coordinating Council. (2019). Kansas public health workforce assessment report.
- National Consortium for Workforce Development, de Beaumont Foundation. (2015). Building Skills for a More Strategic Public Health Workforce: A Call to Action. <u>https://www.debeaumont.org/wp-</u>content/uploads/2019/04/Building-Skills-for-a-More-Strategic-Public-Health-Workforce.pdf
- U.S. Bureau of Labor Statistics. (2020). Occupational outlook handbook. https://www.bls.gov/ooh/

## **Request Updated State University Admissions Policies**

#### Summary and Recommendations

The Qualified Admissions regulations require the Kansas Board of Regents to approve admissions policies for state universities. The state university admissions policies need to be updated to reflect the changes to the regulations and submitted for Board approval.

September 8, 2020

### Background

During the 1996 Session, the Legislature enacted K.S.A. 76-717, thereby replacing the State's open admissions policy with a qualified admissions policy. Universities implemented Qualified Admissions in 1997, and with a four-year window for implementation, state universities used QA criteria to admit students beginning in 2001.

The legislation also authorized the Kansas Board of Regents to adopt rules and regulations to guide implementation of Qualified Admissions. The Board subsequently adopted Qualified Admissions regulations which required admissions policies for state universities to be approved by the Board. In 2009, K.S.A. 76-717 was amended to allow the Board to adopt rules and regulations establishing standards for admission of students to the six state universities that differ from those set forth in that statute.

In 2010, pursuant to K.S.A. 76-717, and based on recommendations of a task force established to study ways to enhance student success at the state universities, the Board adopted new Qualified Admissions regulations, K.A.R. 88-29a-1 through K.A.R. 88-29a-19 which were effective for summer 2015 applicants, requiring them to complete a precollege curriculum with a 2.0 GPA (2.5 for nonresidents) and then be admitted based on a minimum ACT composite score of 21 or rank in the top 1/3 of their high school class.

In June 2017, the Board received a report from the First Generation Taskforce recommending the Board review the Qualified Admissions criteria for entrance into a state university with a specific focus on precollege curriculum course requirements. The Board adopted the review as an AY 2018 goal and a working group, selected by the state university chief academic officers and consisting of university admissions officers, enrollment management personnel, and diversity and inclusion staff, was organized to address this Board goal. The new criteria are detailed below:

## ESU, PSU, FHSU, & WSU:

- ACT 21+ or Cumulative GPA 2.25+
- Cumulative GPA 2.0+ for College Credit earned in High School

#### **K-State:**

- ACT 21+ <u>or</u> GPA 3.25+
- Cumulative GPA 2.0+ for College Credit earned in High School

#### KU:

- ACT 21+ and Cumulative GPA 3.25+ or ACT 24+ and Cumulative GPA 3.0+
- Cumulative GPA 2.0+ for College Credit earned in High School

Freshman applicants graduating from an unaccredited high school shall achieve an ACT score equivalent with those outlined above per each university, and achieve a cumulative GPA of 2.0+ for College Credit earned in high school.

The above requirements are outlined in the amended regulations the Board is expected to adopt at the Sept. 10,

2020 meeting. These criteria will take effect for those who seek admission in FY 22 (those seeking admission for Summer 21, Fall 21, and Spring 22).

Lastly, it should also be noted that high school courses will no longer be a condition for admission. When the Board approved these changes in 2019, it was noted that course units (not specific courses, e.g., 4 units of math) would be recommended. In recent months, some K-12 entities have expressed concerns about the guidance associated with recommending general units rather than specific courses. As such, it is anticipated that the idea of recommending specific high school courses will be discussed during the Fall 2020 semester. If the Board determines that specific high school courses should be recommended in lieu of general units, such courses will serve as a guidance mechanism rather than a condition of admission.

### **Required Action**

Each state university shall update its admissions policy to reflect the new admissions criteria and updated regulations. Each policy shall include all the criteria outlined in K.A.R. 88-29c-9, attached, and shall be submitted to Academic Affairs for consideration of Board approval.

**88-29c-9.** Admission policies for state educational institutions. This regulation shall be applicable to each state educational institution's review of applicants beginning with the 2021 summer session. The president of each state educational institution or a designee shall establish admission policies that meet all of the following requirements:

(a) The policies shall not conflict with the provisions of this article of the board of regents' regulations.

(b) The policies shall specify the materials required for a complete application file.

(c) The policies shall address the enrollment of both degree-seeking and non-degreeseeking students as well as each student's transition from degree-seeking to non-degreeseeking status or from non-degree-seeking to degree-seeking status. Policies shall mandate that each non-degree-seeking student who applies to enroll as a degree-seeking student shall be admitted only if one of the following conditions is met:

(1) The student meets the applicable requirements specified in K.A.R. 88-29-4, K.A.R. 88-29c-5, K.A.R. 88-29a-6, K.A.R. 88-29c-7, and 88-29a-7a.

(2) The student is admitted by means of the exception window for resident freshmen class admissions described in K.A.R. 88-29a-8.

(3) The student is admitted by means of the exception window for resident transfer admissions described in K.A.R. 88-29-8a.

(4) The student is admitted by means of the exception window for nonresident transfer admissions described in K.A.R. 88-29-8b.

(5) The student is admitted by means of the exception window for nonresident freshman class admissions described in K.A.R. 88-29a-8c.

56

(d) The policies shall include an explanation of the exception windows and the state educational institution's method to determine which applicants would be admitted if there were more applicants than the state educational institution is allowed under K.A.R. 88-29a-8, K.A.R. 88-29-8a, K.A.R. 88-29-8b, or K.A.R. 88-29a-8c.

(e) The policies may include the establishment of subcategories of non-degreeseeking students.

(f) The policies shall include a statement indicating whether the state educational institution will consider, in the admission decision, any postsecondary credit from an institution that is not accredited and has not been granted preaccreditation status by an agency recognized by the United States department of education or by an equivalent international agency. If the state educational institution considers these credits, the admission decision shall be made in accordance with K.A.R. 88-29-4.

(g) The policies shall include a statement of whether the state educational institution enrolls students in the temporary or provisional admission category.

(1) If the state educational institution enrolls any students in the temporary admission category, the policies shall include the following:

(A) A description of requirements for exiting the temporary admission category and entering another admission category;

(B) a statement that a temporarily admitted student may be denied admission to a specific degree program;

(C) a statement that each student who fails to exit from the temporary admission category within the specified period of time shall be disenrolled; and

57

(D) a statement that each applicant who is admitted in the temporary admission category pursuant to K.A.R. 88-29c-10(a)(2) shall be allowed to exit from the temporary admission category and enter the regular admission category only upon verification of high school graduation.

(2) If the state educational institution enrolls any students in the provisional admission category, the policies shall include the following:

(A) A description of requirements for exiting the provisional admission category and entering another admission category;

(B) a statement that any student admitted in the provisional admission category may be denied admission to a specific degree program; and

(C) a statement that each student who fails to exit from the provisional admission category within the period of time specified by the state educational institution shall be disenrolled.

(3) The state educational institution's policy shall mandate that a student who meets the criteria for both the temporary and provisional admission categories shall not be granted regular admission until the student fulfils the requirements for exiting each of the categories in which the student is initially enrolled.

(h) The admission policy of each state educational institution shall be required to be approved in advance by the board of regents. (Authorized by and implementing K.S.A. 76-717; effective P-\_\_\_\_\_.)

### **Recommended High School Courses for College Preparation**

#### Daniel Archer VP Academic Affairs

#### Summary

When the new Qualified Admission criteria take effect, high school courses will no longer be a condition of admission. While completing high school courses will not be an admission requirement, Board staff propose that the Kansas Scholars Curriculum is designated as the recommended coursework for high school students who wish to pursue post-secondary education at a state university.

September 8, 2020

### Background

The Board approved Qualified Admission (QA) criteria changes on September 18, 2019. The new QA criteria have been codified in proposed regulations that the Board will review for approval at its September 10, 2020 meeting. Upon approval, the new QA regulations will take effect for applicants seeking admission in FY 22 (Summer 21, Fall 21, and Spring 22). The high school graduating class of 2021 will be the first class that will be reviewed for admission under the new QA standards.

Among other changes, high school courses will no longer be a condition for admission. When the Board approved these changes in 2019, it was noted that course units (not specific courses, e.g., 4 units of math) would be recommended. In recent months, some K-12 entities have expressed concerns about the guidance associated with recommending general units rather than specific courses. As such, it was requested that specific courses be recommended to help K-12 guide students toward coursework that will advance college readiness.

Board staff propose that the Kansas Scholars Curriculum is designated as the recommended coursework for high school students who wish to pursue post-secondary education at a state university. As background, the Kansas Scholars Curriculum is a set of high school courses that a student completes to be eligible for a state-funded scholarship program.

Recommending the Kansas Scholars Curriculum will align with a framework in which counselors, families, and students are familiar, steer more students toward a pathway that fosters college readiness, and enable eligible students to qualify for financial assistance.

#### **Scholars Curriculum Courses**

The Kansas Scholars Curriculum is detailed below.

#### English - 4 years

One unit to be taken each year. Must include substantial recurrent practice in writing extensive and structured papers, extensive reading of significant literature, and significant experience in speaking and listening.

#### Mathematics - 4 years

Algebra I, Algebra II, Geometry, and one unit of advanced mathematics-- suggested courses include: Analytic Geometry, Trigonometry, Advanced Algebra, Probability and Statistics, Functions or Calculus.

#### Science - 3 years

One year each in Biology, Chemistry, and Physics, each of which include an average of one laboratory period a week. Applied/technical courses may not substitute for a unit of natural science credit.

#### Social Studies - 3 years

One unit of U.S. History; minimum of one-half unit of U.S. Government and minimum of one-half unit selected from: World History, World Geography or International Relations; and one unit selected from: Psychology,

Economics, U.S. Government, U.S. History, Current Social Issues, Sociology, Anthropology, and Race and Ethnic Group Relations. Half unit courses may be combined to make this a whole unit.

### Foreign Language - 2 years

Two years of one language. Latin and Sign Language are accepted.

While each content area will help build knowledge and skills for collegiate preparation, a special emphasis should be placed on the math area as some high school students only complete Algebra II and opt to forgo a senior year math course.

Students should be highly encouraged to take a high school math class above the level of Algebra II because completing this level of math increases math college readiness, which thereby reduces the need for math remediation.<sup>1</sup> Equally important, this enrollment step is also linked with long-term collegiate success. A national study revealed that a student who takes a math class above the level of Algebra II in high school more than doubles the odds that he/she will complete a bachelor's degree.<sup>2</sup>

### **Staff Recommendation**

To reiterate, if a student does not complete the Kansas Scholars Curriculum, it will not impact his/her admission status as this proposal seeks to recommend these courses as a guidance mechanism rather than require them as a condition of admission.

Board staff recommend that COCAO endorse the Kansas Scholars Curriculum as the recommended coursework for high school students who wish to pursue post-secondary education at a state university. Upon approval, this proposal will be reviewed by the Board of Academic Affairs Standing Committee.

Research and Improvement.

<sup>&</sup>lt;sup>1</sup> ACT. (2007). *Rigor at risk: Reaffirming quality in the high school core curriculum*. Iowa City, IA: ACT. <sup>2</sup>Adelman, C. (1999). *Answers in the toolbox: Academic intensity, attendance patterns, and bachelor's degree attainment*. Washington, DC: U.S. Department of Education, Office of Educational